Source code for chess.engine

from __future__ import annotations

import abc
import asyncio
import collections
import concurrent.futures
import contextlib
import copy
import dataclasses
import enum
import logging
import math
import shlex
import subprocess
import sys
import threading
import time
import typing
import re

import chess

from chess import Color
from types import TracebackType
from typing import Any, Callable, Coroutine, Deque, Dict, Generator, Generic, Iterable, Iterator, List, Literal, Mapping, MutableMapping, Optional, Tuple, Type, TypedDict, TypeVar, Union

WdlModel = Literal["sf", "sf16", "sf15.1", "sf15", "sf14", "sf12", "lichess"]


T = TypeVar("T")
ProtocolT = TypeVar("ProtocolT", bound="Protocol")

ConfigValue = Union[str, int, bool, None]
ConfigMapping = Mapping[str, ConfigValue]


LOGGER = logging.getLogger(__name__)


MANAGED_OPTIONS = ["uci_chess960", "uci_variant", "multipv", "ponder"]


# No longer needed, but alias kept around for compatibility.
EventLoopPolicy = asyncio.DefaultEventLoopPolicy


def run_in_background(coroutine: Callable[[concurrent.futures.Future[T]], Coroutine[Any, Any, None]], *, name: Optional[str] = None, debug: Optional[bool] = None) -> T:
    """
    Runs ``coroutine(future)`` in a new event loop on a background thread.

    Blocks on *future* and returns the result as soon as it is resolved.
    The coroutine and all remaining tasks continue running in the background
    until complete.
    """
    assert asyncio.iscoroutinefunction(coroutine)

    future: concurrent.futures.Future[T] = concurrent.futures.Future()

    def background() -> None:
        try:
            asyncio.run(coroutine(future), debug=debug)
            future.cancel()
        except Exception as exc:
            future.set_exception(exc)

    threading.Thread(target=background, name=name).start()
    return future.result()


[docs]class EngineError(RuntimeError): """Runtime error caused by a misbehaving engine or incorrect usage."""
[docs]class EngineTerminatedError(EngineError): """The engine process exited unexpectedly."""
[docs]class AnalysisComplete(Exception): """ Raised when analysis is complete, all information has been consumed, but further information was requested. """
[docs]@dataclasses.dataclass(frozen=True) class Option: """Information about an available engine option.""" name: str """The name of the option.""" type: str """ The type of the option. +--------+-----+------+------------------------------------------------+ | type | UCI | CECP | value | +========+=====+======+================================================+ | check | X | X | ``True`` or ``False`` | +--------+-----+------+------------------------------------------------+ | spin | X | X | integer, between *min* and *max* | +--------+-----+------+------------------------------------------------+ | combo | X | X | string, one of *var* | +--------+-----+------+------------------------------------------------+ | button | X | X | ``None`` | +--------+-----+------+------------------------------------------------+ | reset | | X | ``None`` | +--------+-----+------+------------------------------------------------+ | save | | X | ``None`` | +--------+-----+------+------------------------------------------------+ | string | X | X | string without line breaks | +--------+-----+------+------------------------------------------------+ | file | | X | string, interpreted as the path to a file | +--------+-----+------+------------------------------------------------+ | path | | X | string, interpreted as the path to a directory | +--------+-----+------+------------------------------------------------+ """ default: ConfigValue """The default value of the option.""" min: Optional[int] """The minimum integer value of a *spin* option.""" max: Optional[int] """The maximum integer value of a *spin* option.""" var: Optional[List[str]] """A list of allowed string values for a *combo* option.""" def parse(self, value: ConfigValue) -> ConfigValue: if self.type == "check": return value and value != "false" elif self.type == "spin": try: value = int(value) # type: ignore except ValueError: raise EngineError(f"expected integer for spin option {self.name!r}, got: {value!r}") if self.min is not None and value < self.min: raise EngineError(f"expected value for option {self.name!r} to be at least {self.min}, got: {value}") if self.max is not None and self.max < value: raise EngineError(f"expected value for option {self.name!r} to be at most {self.max}, got: {value}") return value elif self.type == "combo": value = str(value) if value not in (self.var or []): raise EngineError("invalid value for combo option {!r}, got: {} (available: {})".format(self.name, value, ", ".join(self.var) if self.var else "-")) return value elif self.type in ["button", "reset", "save"]: return None elif self.type in ["string", "file", "path"]: value = str(value) if "\n" in value or "\r" in value: raise EngineError(f"invalid line-break in string option {self.name!r}: {value!r}") return value else: raise EngineError(f"unknown option type: {self.type!r}")
[docs] def is_managed(self) -> bool: """ Some options are managed automatically: ``UCI_Chess960``, ``UCI_Variant``, ``MultiPV``, ``Ponder``. """ return self.name.lower() in MANAGED_OPTIONS
[docs]@dataclasses.dataclass class Limit: """Search-termination condition.""" time: Optional[float] = None """Search exactly *time* seconds.""" depth: Optional[int] = None """Search *depth* ply only.""" nodes: Optional[int] = None """Search only a limited number of *nodes*.""" mate: Optional[int] = None """Search for a mate in *mate* moves.""" white_clock: Optional[float] = None """Time in seconds remaining for White.""" black_clock: Optional[float] = None """Time in seconds remaining for Black.""" white_inc: Optional[float] = None """Fisher increment for White, in seconds.""" black_inc: Optional[float] = None """Fisher increment for Black, in seconds.""" remaining_moves: Optional[int] = None """ Number of moves to the next time control. If this is not set, but *white_clock* and *black_clock* are, then it is sudden death. """ clock_id: object = None """ An identifier to use with XBoard engines to signal that the time control has changed. When this field changes, Xboard engines are sent level or st commands as appropriate. Otherwise, only time and otim commands are sent to update the engine's clock. """ def __repr__(self) -> str: # Like default __repr__, but without None values. return "{}({})".format( type(self).__name__, ", ".join("{}={!r}".format(attr, getattr(self, attr)) for attr in ["time", "depth", "nodes", "mate", "white_clock", "black_clock", "white_inc", "black_inc", "remaining_moves"] if getattr(self, attr) is not None))
[docs]class InfoDict(TypedDict, total=False): """ Dictionary of aggregated information sent by the engine. Commonly used keys are: ``score`` (a :class:`~chess.engine.PovScore`), ``pv`` (a list of :class:`~chess.Move` objects), ``depth``, ``seldepth``, ``time`` (in seconds), ``nodes``, ``nps``, ``multipv`` (``1`` for the mainline). Others: ``tbhits``, ``currmove``, ``currmovenumber``, ``hashfull``, ``cpuload``, ``refutation``, ``currline``, ``ebf`` (effective branching factor), ``wdl`` (a :class:`~chess.engine.PovWdl`), and ``string``. """ score: PovScore pv: List[chess.Move] depth: int seldepth: int time: float nodes: int nps: int tbhits: int multipv: int currmove: chess.Move currmovenumber: int hashfull: int cpuload: int refutation: Dict[chess.Move, List[chess.Move]] currline: Dict[int, List[chess.Move]] ebf: float wdl: PovWdl string: str
[docs]class PlayResult: """Returned by :func:`chess.engine.Protocol.play()`.""" move: Optional[chess.Move] """The best move according to the engine, or ``None``.""" ponder: Optional[chess.Move] """The response that the engine expects after *move*, or ``None``.""" info: InfoDict """ A dictionary of extra :class:`information <chess.engine.InfoDict>` sent by the engine, if selected with the *info* argument of :func:`~chess.engine.Protocol.play()`. """ draw_offered: bool """Whether the engine offered a draw before moving.""" resigned: bool """Whether the engine resigned.""" def __init__(self, move: Optional[chess.Move], ponder: Optional[chess.Move], info: Optional[InfoDict] = None, *, draw_offered: bool = False, resigned: bool = False) -> None: self.move = move self.ponder = ponder self.info = info or {} self.draw_offered = draw_offered self.resigned = resigned def __repr__(self) -> str: return "<{} at {:#x} (move={}, ponder={}, info={}, draw_offered={}, resigned={})>".format( type(self).__name__, id(self), self.move, self.ponder, self.info, self.draw_offered, self.resigned)
class Info(enum.IntFlag): """Used to filter information sent by the chess engine.""" NONE = 0 BASIC = 1 SCORE = 2 PV = 4 REFUTATION = 8 CURRLINE = 16 ALL = BASIC | SCORE | PV | REFUTATION | CURRLINE INFO_NONE = Info.NONE INFO_BASIC = Info.BASIC INFO_SCORE = Info.SCORE INFO_PV = Info.PV INFO_REFUTATION = Info.REFUTATION INFO_CURRLINE = Info.CURRLINE INFO_ALL = Info.ALL
[docs]@dataclasses.dataclass class Opponent: """Used to store information about an engine's opponent.""" name: Optional[str] """The name of the opponent.""" title: Optional[str] """The opponent's title--for example, GM, IM, or BOT.""" rating: Optional[int] """The opponent's ELO rating.""" is_engine: Optional[bool] """Whether the opponent is a chess engine/computer program."""
[docs]class PovScore: """A relative :class:`~chess.engine.Score` and the point of view.""" relative: Score """The relative :class:`~chess.engine.Score`.""" turn: Color """The point of view (``chess.WHITE`` or ``chess.BLACK``).""" def __init__(self, relative: Score, turn: Color) -> None: self.relative = relative self.turn = turn
[docs] def white(self) -> Score: """Gets the score from White's point of view.""" return self.pov(chess.WHITE)
[docs] def black(self) -> Score: """Gets the score from Black's point of view.""" return self.pov(chess.BLACK)
[docs] def pov(self, color: Color) -> Score: """Gets the score from the point of view of the given *color*.""" return self.relative if self.turn == color else -self.relative
[docs] def is_mate(self) -> bool: """Tests if this is a mate score.""" return self.relative.is_mate()
[docs] def wdl(self, *, model: WdlModel = "sf", ply: int = 30) -> PovWdl: """See :func:`~chess.engine.Score.wdl()`.""" return PovWdl(self.relative.wdl(model=model, ply=ply), self.turn)
def __repr__(self) -> str: return "PovScore({!r}, {})".format(self.relative, "WHITE" if self.turn else "BLACK") def __eq__(self, other: object) -> bool: if isinstance(other, PovScore): return self.white() == other.white() else: return NotImplemented
[docs]class Score(abc.ABC): """ Evaluation of a position. The score can be :class:`~chess.engine.Cp` (centi-pawns), :class:`~chess.engine.Mate` or :py:data:`~chess.engine.MateGiven`. A positive value indicates an advantage. There is a total order defined on centi-pawn and mate scores. >>> from chess.engine import Cp, Mate, MateGiven >>> >>> Mate(-0) < Mate(-1) < Cp(-50) < Cp(200) < Mate(4) < Mate(1) < MateGiven True Scores can be negated to change the point of view: >>> -Cp(20) Cp(-20) >>> -Mate(-4) Mate(+4) >>> -Mate(0) MateGiven """ @typing.overload def score(self, *, mate_score: int) -> int: ... @typing.overload def score(self, *, mate_score: Optional[int] = None) -> Optional[int]: ...
[docs] @abc.abstractmethod def score(self, *, mate_score: Optional[int] = None) -> Optional[int]: """ Returns the centi-pawn score as an integer or ``None``. You can optionally pass a large value to convert mate scores to centi-pawn scores. >>> Cp(-300).score() -300 >>> Mate(5).score() is None True >>> Mate(5).score(mate_score=100000) 99995 """
[docs] @abc.abstractmethod def mate(self) -> Optional[int]: """ Returns the number of plies to mate, negative if we are getting mated, or ``None``. .. warning:: This conflates ``Mate(0)`` (we lost) and ``MateGiven`` (we won) to ``0``. """
[docs] def is_mate(self) -> bool: """Tests if this is a mate score.""" return self.mate() is not None
[docs] @abc.abstractmethod def wdl(self, *, model: WdlModel = "sf", ply: int = 30) -> Wdl: """ Returns statistics for the expected outcome of this game, based on a *model*, given that this score is reached at *ply*. Scores have a total order, but it makes little sense to compute the difference between two scores. For example, going from ``Cp(-100)`` to ``Cp(+100)`` is much more significant than going from ``Cp(+300)`` to ``Cp(+500)``. It is better to compute differences of the expectation values for the outcome of the game (based on winning chances and drawing chances). >>> Cp(100).wdl().expectation() - Cp(-100).wdl().expectation() # doctest: +ELLIPSIS 0.379... >>> Cp(500).wdl().expectation() - Cp(300).wdl().expectation() # doctest: +ELLIPSIS 0.015... :param model: * ``sf``, the WDL model used by the latest Stockfish (currently ``sf16``). * ``sf16``, the WDL model used by Stockfish 16. * ``sf15.1``, the WDL model used by Stockfish 15.1. * ``sf15``, the WDL model used by Stockfish 15. * ``sf14``, the WDL model used by Stockfish 14. * ``sf12``, the WDL model used by Stockfish 12. * ``lichess``, the win rate model used by Lichess. Does not use *ply*, and does not consider drawing chances. :param ply: The number of half-moves played since the starting position. Models may scale scores slightly differently based on this. Defaults to middle game. """
@abc.abstractmethod def __neg__(self) -> Score: ... @abc.abstractmethod def __pos__(self) -> Score: ... @abc.abstractmethod def __abs__(self) -> Score: ... def _score_tuple(self) -> Tuple[bool, bool, bool, int, Optional[int]]: mate = self.mate() return ( isinstance(self, MateGivenType), mate is not None and mate > 0, mate is None, -(mate or 0), self.score(), ) def __eq__(self, other: object) -> bool: if isinstance(other, Score): return self._score_tuple() == other._score_tuple() else: return NotImplemented def __lt__(self, other: object) -> bool: if isinstance(other, Score): return self._score_tuple() < other._score_tuple() else: return NotImplemented def __le__(self, other: object) -> bool: if isinstance(other, Score): return self._score_tuple() <= other._score_tuple() else: return NotImplemented def __gt__(self, other: object) -> bool: if isinstance(other, Score): return self._score_tuple() > other._score_tuple() else: return NotImplemented def __ge__(self, other: object) -> bool: if isinstance(other, Score): return self._score_tuple() >= other._score_tuple() else: return NotImplemented
def _sf16_wins(cp: int, *, ply: int) -> int: # https://github.com/official-stockfish/Stockfish/blob/sf_16/src/uci.h#L38 NormalizeToPawnValue = 328 # https://github.com/official-stockfish/Stockfish/blob/sf_16/src/uci.cpp#L200-L224 m = min(240, max(ply, 0)) / 64 a = (((0.38036525 * m + -2.82015070) * m + 23.17882135) * m) + 307.36768407 b = (((-2.29434733 * m + 13.27689788) * m + -14.26828904) * m) + 63.45318330 x = min(4000, max(cp * NormalizeToPawnValue / 100, -4000)) return int(0.5 + 1000 / (1 + math.exp((a - x) / b))) def _sf15_1_wins(cp: int, *, ply: int) -> int: # https://github.com/official-stockfish/Stockfish/blob/sf_15.1/src/uci.h#L38 NormalizeToPawnValue = 361 # https://github.com/official-stockfish/Stockfish/blob/sf_15.1/src/uci.cpp#L200-L224 m = min(240, max(ply, 0)) / 64 a = (((-0.58270499 * m + 2.68512549) * m + 15.24638015) * m) + 344.49745382 b = (((-2.65734562 * m + 15.96509799) * m + -20.69040836) * m) + 73.61029937 x = min(4000, max(cp * NormalizeToPawnValue / 100, -4000)) return int(0.5 + 1000 / (1 + math.exp((a - x) / b))) def _sf15_wins(cp: int, *, ply: int) -> int: # https://github.com/official-stockfish/Stockfish/blob/sf_15/src/uci.cpp#L200-L220 m = min(240, max(ply, 0)) / 64 a = (((-1.17202460e-1 * m + 5.94729104e-1) * m + 1.12065546e+1) * m) + 1.22606222e+2 b = (((-1.79066759 * m + 11.30759193) * m + -17.43677612) * m) + 36.47147479 x = min(2000, max(cp, -2000)) return int(0.5 + 1000 / (1 + math.exp((a - x) / b))) def _sf14_wins(cp: int, *, ply: int) -> int: # https://github.com/official-stockfish/Stockfish/blob/sf_14/src/uci.cpp#L200-L220 m = min(240, max(ply, 0)) / 64 a = (((-3.68389304 * m + 30.07065921) * m + -60.52878723) * m) + 149.53378557 b = (((-2.01818570 * m + 15.85685038) * m + -29.83452023) * m) + 47.59078827 x = min(2000, max(cp, -2000)) return int(0.5 + 1000 / (1 + math.exp((a - x) / b))) def _sf12_wins(cp: int, *, ply: int) -> int: # https://github.com/official-stockfish/Stockfish/blob/sf_12/src/uci.cpp#L198-L218 m = min(240, max(ply, 0)) / 64 a = (((-8.24404295 * m + 64.23892342) * m + -95.73056462) * m) + 153.86478679 b = (((-3.37154371 * m + 28.44489198) * m + -56.67657741) * m) + 72.05858751 x = min(1000, max(cp, -1000)) return int(0.5 + 1000 / (1 + math.exp((a - x) / b))) def _lichess_raw_wins(cp: int) -> int: # https://github.com/lichess-org/lila/pull/11148 # https://github.com/lichess-org/lila/blob/2242b0a08faa06e7be5508d338ede7bb09049777/modules/analyse/src/main/WinPercent.scala#L26-L30 return round(1000 / (1 + math.exp(-0.00368208 * cp))) class Cp(Score): """Centi-pawn score.""" def __init__(self, cp: int) -> None: self.cp = cp def mate(self) -> None: return None def score(self, *, mate_score: Optional[int] = None) -> int: return self.cp def wdl(self, *, model: WdlModel = "sf", ply: int = 30) -> Wdl: if model == "lichess": wins = _lichess_raw_wins(max(-1000, min(self.cp, 1000))) losses = 1000 - wins elif model == "sf12": wins = _sf12_wins(self.cp, ply=ply) losses = _sf12_wins(-self.cp, ply=ply) elif model == "sf14": wins = _sf14_wins(self.cp, ply=ply) losses = _sf14_wins(-self.cp, ply=ply) elif model == "sf15": wins = _sf15_wins(self.cp, ply=ply) losses = _sf15_wins(-self.cp, ply=ply) elif model == "sf15.1": wins = _sf15_1_wins(self.cp, ply=ply) losses = _sf15_1_wins(-self.cp, ply=ply) else: wins = _sf16_wins(self.cp, ply=ply) losses = _sf16_wins(-self.cp, ply=ply) draws = 1000 - wins - losses return Wdl(wins, draws, losses) def __str__(self) -> str: return f"+{self.cp:d}" if self.cp > 0 else str(self.cp) def __repr__(self) -> str: return f"Cp({self})" def __neg__(self) -> Cp: return Cp(-self.cp) def __pos__(self) -> Cp: return Cp(self.cp) def __abs__(self) -> Cp: return Cp(abs(self.cp)) class Mate(Score): """Mate score.""" def __init__(self, moves: int) -> None: self.moves = moves def mate(self) -> int: return self.moves @typing.overload def score(self, *, mate_score: int) -> int: ... @typing.overload def score(self, *, mate_score: Optional[int] = None) -> Optional[int]: ... def score(self, *, mate_score: Optional[int] = None) -> Optional[int]: if mate_score is None: return None elif self.moves > 0: return mate_score - self.moves else: return -mate_score - self.moves def wdl(self, *, model: WdlModel = "sf", ply: int = 30) -> Wdl: if model == "lichess": cp = (21 - min(10, abs(self.moves))) * 100 wins = _lichess_raw_wins(cp) return Wdl(wins, 0, 1000 - wins) if self.moves > 0 else Wdl(1000 - wins, 0, wins) else: return Wdl(1000, 0, 0) if self.moves > 0 else Wdl(0, 0, 1000) def __str__(self) -> str: return f"#+{self.moves}" if self.moves > 0 else f"#-{abs(self.moves)}" def __repr__(self) -> str: return "Mate({})".format(str(self).lstrip("#")) def __neg__(self) -> Union[MateGivenType, Mate]: return MateGiven if not self.moves else Mate(-self.moves) def __pos__(self) -> Mate: return Mate(self.moves) def __abs__(self) -> Union[MateGivenType, Mate]: return MateGiven if not self.moves else Mate(abs(self.moves)) class MateGivenType(Score): """Winning mate score, equivalent to ``-Mate(0)``.""" def mate(self) -> int: return 0 @typing.overload def score(self, *, mate_score: int) -> int: ... @typing.overload def score(self, *, mate_score: Optional[int] = None) -> Optional[int]: ... def score(self, *, mate_score: Optional[int] = None) -> Optional[int]: return mate_score def wdl(self, *, model: WdlModel = "sf", ply: int = 30) -> Wdl: return Wdl(1000, 0, 0) def __neg__(self) -> Mate: return Mate(0) def __pos__(self) -> MateGivenType: return self def __abs__(self) -> MateGivenType: return self def __repr__(self) -> str: return "MateGiven" def __str__(self) -> str: return "#+0" MateGiven = MateGivenType()
[docs]class PovWdl: """ Relative :class:`win/draw/loss statistics <chess.engine.Wdl>` and the point of view. .. deprecated:: 1.2 Behaves like a tuple ``(wdl.relative.wins, wdl.relative.draws, wdl.relative.losses)`` for backwards compatibility. But it is recommended to use the provided fields and methods instead. """ relative: Wdl """The relative :class:`~chess.engine.Wdl`.""" turn: Color """The point of view (``chess.WHITE`` or ``chess.BLACK``).""" def __init__(self, relative: Wdl, turn: Color) -> None: self.relative = relative self.turn = turn
[docs] def white(self) -> Wdl: """Gets the :class:`~chess.engine.Wdl` from White's point of view.""" return self.pov(chess.WHITE)
[docs] def black(self) -> Wdl: """Gets the :class:`~chess.engine.Wdl` from Black's point of view.""" return self.pov(chess.BLACK)
[docs] def pov(self, color: Color) -> Wdl: """ Gets the :class:`~chess.engine.Wdl` from the point of view of the given *color*. """ return self.relative if self.turn == color else -self.relative
def __bool__(self) -> bool: return bool(self.relative) def __repr__(self) -> str: return "PovWdl({!r}, {})".format(self.relative, "WHITE" if self.turn else "BLACK") # Unfortunately in python-chess v1.1.0, info["wdl"] was a simple tuple # of the relative permille values, so we have to support __iter__, # __len__, __getitem__, and equality comparisons with other tuples. # Never mind the ordering, because that's not a sensible operation, anyway. def __iter__(self) -> Iterator[int]: yield self.relative.wins yield self.relative.draws yield self.relative.losses def __len__(self) -> int: return 3 def __getitem__(self, idx: int) -> int: return (self.relative.wins, self.relative.draws, self.relative.losses)[idx] def __eq__(self, other: object) -> bool: if isinstance(other, PovWdl): return self.white() == other.white() elif isinstance(other, tuple): return (self.relative.wins, self.relative.draws, self.relative.losses) == other else: return NotImplemented
[docs]@dataclasses.dataclass class Wdl: """Win/draw/loss statistics.""" wins: int """The number of wins.""" draws: int """The number of draws.""" losses: int """The number of losses."""
[docs] def total(self) -> int: """ Returns the total number of games. Usually, ``wdl`` reported by engines is scaled to 1000 games. """ return self.wins + self.draws + self.losses
[docs] def winning_chance(self) -> float: """Returns the relative frequency of wins.""" return self.wins / self.total()
[docs] def drawing_chance(self) -> float: """Returns the relative frequency of draws.""" return self.draws / self.total()
[docs] def losing_chance(self) -> float: """Returns the relative frequency of losses.""" return self.losses / self.total()
[docs] def expectation(self) -> float: """ Returns the expectation value, where a win is valued 1, a draw is valued 0.5, and a loss is valued 0. """ return (self.wins + 0.5 * self.draws) / self.total()
def __bool__(self) -> bool: return bool(self.total()) def __iter__(self) -> Iterator[int]: yield self.wins yield self.draws yield self.losses def __reversed__(self) -> Iterator[int]: yield self.losses yield self.draws yield self.wins def __pos__(self) -> Wdl: return self def __neg__(self) -> Wdl: return Wdl(self.losses, self.draws, self.wins)
class MockTransport(asyncio.SubprocessTransport, asyncio.WriteTransport): def __init__(self, protocol: Protocol) -> None: super().__init__() self.protocol = protocol self.expectations: Deque[Tuple[str, List[str]]] = collections.deque() self.expected_pings = 0 self.stdin_buffer = bytearray() self.protocol.connection_made(self) def expect(self, expectation: str, responses: List[str] = []) -> None: self.expectations.append((expectation, responses)) def expect_ping(self) -> None: self.expected_pings += 1 def assert_done(self) -> None: assert not self.expectations, f"pending expectations: {self.expectations}" def get_pipe_transport(self, fd: int) -> Optional[asyncio.BaseTransport]: assert fd == 0, f"expected 0 for stdin, got {fd}" return self def write(self, data: bytes) -> None: self.stdin_buffer.extend(data) while b"\n" in self.stdin_buffer: line_bytes, self.stdin_buffer = self.stdin_buffer.split(b"\n", 1) line = line_bytes.decode("utf-8") if line.startswith("ping ") and self.expected_pings: self.expected_pings -= 1 self.protocol.pipe_data_received(1, (line.replace("ping ", "pong ") + "\n").encode("utf-8")) else: assert self.expectations, f"unexpected: {line!r}" expectation, responses = self.expectations.popleft() assert expectation == line, f"expected {expectation}, got: {line}" if responses: self.protocol.pipe_data_received(1, "\n".join(responses + [""]).encode("utf-8")) def get_pid(self) -> int: return id(self) def get_returncode(self) -> Optional[int]: return None if self.expectations else 0
[docs]class Protocol(asyncio.SubprocessProtocol, metaclass=abc.ABCMeta): """Protocol for communicating with a chess engine process.""" options: MutableMapping[str, Option] """Dictionary of available options.""" id: Dict[str, str] """ Dictionary of information about the engine. Common keys are ``name`` and ``author``. """ returncode: asyncio.Future[int] """Future: Exit code of the process.""" def __init__(self: ProtocolT) -> None: self.loop = asyncio.get_running_loop() self.transport: Optional[asyncio.SubprocessTransport] = None self.buffer = { 1: bytearray(), # stdout 2: bytearray(), # stderr } self.command: Optional[BaseCommand[ProtocolT, Any]] = None self.next_command: Optional[BaseCommand[ProtocolT, Any]] = None self.initialized = False self.returncode: asyncio.Future[int] = asyncio.Future() def connection_made(self, transport: asyncio.BaseTransport) -> None: # SubprocessTransport expected, but not checked to allow duck typing. self.transport = transport # type: ignore LOGGER.debug("%s: Connection made", self) def connection_lost(self: ProtocolT, exc: Optional[Exception]) -> None: assert self.transport is not None code = self.transport.get_returncode() assert code is not None, "connect lost, but got no returncode" LOGGER.debug("%s: Connection lost (exit code: %d, error: %s)", self, code, exc) # Terminate commands. if self.command is not None: self.command._engine_terminated(self, code) self.command = None if self.next_command is not None: self.next_command._engine_terminated(self, code) self.next_command = None self.returncode.set_result(code) def process_exited(self) -> None: LOGGER.debug("%s: Process exited", self) def send_line(self, line: str) -> None: LOGGER.debug("%s: << %s", self, line) assert self.transport is not None, "cannot send line before connection is made" stdin = self.transport.get_pipe_transport(0) # WriteTransport expected, but not checked to allow duck typing. stdin.write((line + "\n").encode("utf-8")) # type: ignore def pipe_data_received(self, fd: int, data: Union[bytes, str]) -> None: self.buffer[fd].extend(data) # type: ignore while b"\n" in self.buffer[fd]: line_bytes, self.buffer[fd] = self.buffer[fd].split(b"\n", 1) if line_bytes.endswith(b"\r"): line_bytes = line_bytes[:-1] try: line = line_bytes.decode("utf-8") except UnicodeDecodeError as err: LOGGER.warning("%s: >> %r (%s)", self, bytes(line_bytes), err) else: if fd == 1: self.loop.call_soon(self._line_received, line) else: self.loop.call_soon(self.error_line_received, line) def error_line_received(self, line: str) -> None: LOGGER.warning("%s: stderr >> %s", self, line) def _line_received(self: ProtocolT, line: str) -> None: LOGGER.debug("%s: >> %s", self, line) self.line_received(line) if self.command: self.command._line_received(self, line) def line_received(self, line: str) -> None: pass async def communicate(self: ProtocolT, command_factory: Callable[[ProtocolT], BaseCommand[ProtocolT, T]]) -> T: command = command_factory(self) if self.returncode.done(): raise EngineTerminatedError(f"engine process dead (exit code: {self.returncode.result()})") assert command.state == CommandState.NEW if self.next_command is not None: self.next_command.result.cancel() self.next_command.finished.cancel() self.next_command.set_finished() self.next_command = command def previous_command_finished(_: Optional[asyncio.Future[None]]) -> None: self.command, self.next_command = self.next_command, None if self.command is not None: cmd = self.command def cancel_if_cancelled(result: asyncio.Future[T]) -> None: if result.cancelled(): cmd._cancel(self) cmd.result.add_done_callback(cancel_if_cancelled) cmd.finished.add_done_callback(previous_command_finished) cmd._start(self) if self.command is None: previous_command_finished(None) elif not self.command.result.done(): self.command.result.cancel() elif not self.command.result.cancelled(): self.command._cancel(self) return await command.result def __repr__(self) -> str: pid = self.transport.get_pid() if self.transport is not None else "?" return f"<{type(self).__name__} (pid={pid})>"
[docs] @abc.abstractmethod async def initialize(self) -> None: """Initializes the engine."""
[docs] @abc.abstractmethod async def ping(self) -> None: """ Pings the engine and waits for a response. Used to ensure the engine is still alive and idle. """
[docs] @abc.abstractmethod async def configure(self, options: ConfigMapping) -> None: """ Configures global engine options. :param options: A dictionary of engine options where the keys are names of :data:`~chess.engine.Protocol.options`. Do not set options that are managed automatically (:func:`chess.engine.Option.is_managed()`). """
[docs] @abc.abstractmethod async def send_opponent_information(self, *, opponent: Optional[Opponent] = None, engine_rating: Optional[int] = None) -> None: """ Sends the engine information about its opponent. The information will be sent after a new game is announced and before the first move. This method should be called before the first move of a game--i.e., the first call to :func:`chess.engine.Protocol.play()`. :param opponent: Optional. An instance of :class:`chess.engine.Opponent` that has the opponent's information. :param engine_rating: Optional. This engine's own rating. Only used by XBoard engines. """
[docs] @abc.abstractmethod async def play(self, board: chess.Board, limit: Limit, *, game: object = None, info: Info = INFO_NONE, ponder: bool = False, draw_offered: bool = False, root_moves: Optional[Iterable[chess.Move]] = None, options: ConfigMapping = {}, opponent: Optional[Opponent] = None) -> PlayResult: """ Plays a position. :param board: The position. The entire move stack will be sent to the engine. :param limit: An instance of :class:`chess.engine.Limit` that determines when to stop thinking. :param game: Optional. An arbitrary object that identifies the game. Will automatically inform the engine if the object is not equal to the previous game (e.g., ``ucinewgame``, ``new``). :param info: Selects which additional information to retrieve from the engine. ``INFO_NONE``, ``INFO_BASIC`` (basic information that is trivial to obtain), ``INFO_SCORE``, ``INFO_PV``, ``INFO_REFUTATION``, ``INFO_CURRLINE``, ``INFO_ALL`` or any bitwise combination. Some overhead is associated with parsing extra information. :param ponder: Whether the engine should keep analysing in the background even after the result has been returned. :param draw_offered: Whether the engine's opponent has offered a draw. Ignored by UCI engines. :param root_moves: Optional. Consider only root moves from this list. :param options: Optional. A dictionary of engine options for the analysis. The previous configuration will be restored after the analysis is complete. You can permanently apply a configuration with :func:`~chess.engine.Protocol.configure()`. :param opponent: Optional. Information about a new opponent. Information about the original opponent will be restored once the move is complete. New opponent information can be made permanent with :func:`~chess.engine.Protocol.send_opponent_information()`. """
@typing.overload async def analyse(self, board: chess.Board, limit: Limit, *, game: object = None, info: Info = INFO_ALL, root_moves: Optional[Iterable[chess.Move]] = None, options: ConfigMapping = {}) -> InfoDict: ... @typing.overload async def analyse(self, board: chess.Board, limit: Limit, *, multipv: int, game: object = None, info: Info = INFO_ALL, root_moves: Optional[Iterable[chess.Move]] = None, options: ConfigMapping = {}) -> List[InfoDict]: ... @typing.overload async def analyse(self, board: chess.Board, limit: Limit, *, multipv: Optional[int] = None, game: object = None, info: Info = INFO_ALL, root_moves: Optional[Iterable[chess.Move]] = None, options: ConfigMapping = {}) -> Union[List[InfoDict], InfoDict]: ...
[docs] async def analyse(self, board: chess.Board, limit: Limit, *, multipv: Optional[int] = None, game: object = None, info: Info = INFO_ALL, root_moves: Optional[Iterable[chess.Move]] = None, options: ConfigMapping = {}) -> Union[List[InfoDict], InfoDict]: """ Analyses a position and returns a dictionary of :class:`information <chess.engine.InfoDict>`. :param board: The position to analyse. The entire move stack will be sent to the engine. :param limit: An instance of :class:`chess.engine.Limit` that determines when to stop the analysis. :param multipv: Optional. Analyse multiple root moves. Will return a list of at most *multipv* dictionaries rather than just a single info dictionary. :param game: Optional. An arbitrary object that identifies the game. Will automatically inform the engine if the object is not equal to the previous game (e.g., ``ucinewgame``, ``new``). :param info: Selects which information to retrieve from the engine. ``INFO_NONE``, ``INFO_BASIC`` (basic information that is trivial to obtain), ``INFO_SCORE``, ``INFO_PV``, ``INFO_REFUTATION``, ``INFO_CURRLINE``, ``INFO_ALL`` or any bitwise combination. Some overhead is associated with parsing extra information. :param root_moves: Optional. Limit analysis to a list of root moves. :param options: Optional. A dictionary of engine options for the analysis. The previous configuration will be restored after the analysis is complete. You can permanently apply a configuration with :func:`~chess.engine.Protocol.configure()`. """ analysis = await self.analysis(board, limit, multipv=multipv, game=game, info=info, root_moves=root_moves, options=options) with analysis: await analysis.wait() return analysis.info if multipv is None else analysis.multipv
[docs] @abc.abstractmethod async def analysis(self, board: chess.Board, limit: Optional[Limit] = None, *, multipv: Optional[int] = None, game: object = None, info: Info = INFO_ALL, root_moves: Optional[Iterable[chess.Move]] = None, options: ConfigMapping = {}) -> AnalysisResult: """ Starts analysing a position. :param board: The position to analyse. The entire move stack will be sent to the engine. :param limit: Optional. An instance of :class:`chess.engine.Limit` that determines when to stop the analysis. Analysis is infinite by default. :param multipv: Optional. Analyse multiple root moves. :param game: Optional. An arbitrary object that identifies the game. Will automatically inform the engine if the object is not equal to the previous game (e.g., ``ucinewgame``, ``new``). :param info: Selects which information to retrieve from the engine. ``INFO_NONE``, ``INFO_BASIC`` (basic information that is trivial to obtain), ``INFO_SCORE``, ``INFO_PV``, ``INFO_REFUTATION``, ``INFO_CURRLINE``, ``INFO_ALL`` or any bitwise combination. Some overhead is associated with parsing extra information. :param root_moves: Optional. Limit analysis to a list of root moves. :param options: Optional. A dictionary of engine options for the analysis. The previous configuration will be restored after the analysis is complete. You can permanently apply a configuration with :func:`~chess.engine.Protocol.configure()`. Returns :class:`~chess.engine.AnalysisResult`, a handle that allows asynchronously iterating over the information sent by the engine and stopping the analysis at any time. """
[docs] @abc.abstractmethod async def send_game_result(self, board: chess.Board, winner: Optional[Color] = None, game_ending: Optional[str] = None, game_complete: bool = True) -> None: """ Sends the engine the result of the game. XBoard engines receive the final moves and a line of the form ``result <winner> {<ending>}``. The ``<winner>`` field is one of ``1-0``, ``0-1``, ``1/2-1/2``, or ``*`` to indicate white won, black won, draw, or adjournment, respectively. The ``<ending>`` field is a description of the specific reason for the end of the game: "White mates", "Time forfeiture", "Stalemate", etc. UCI engines do not expect end-of-game information and so are not sent anything. :param board: The final state of the board. :param winner: Optional. Specify the winner of the game. This is useful if the result of the game is not evident from the board--e.g., time forfeiture or draw by agreement. If not ``None``, this parameter overrides any winner derivable from the board. :param game_ending: Optional. Text describing the reason for the game ending. Similarly to the winner parameter, this overrides any game result derivable from the board. :param game_complete: Optional. Whether the game reached completion. """
[docs] @abc.abstractmethod async def quit(self) -> None: """Asks the engine to shut down."""
@classmethod async def popen(cls: Type[ProtocolT], command: Union[str, List[str]], *, setpgrp: bool = False, **popen_args: Any) -> Tuple[asyncio.SubprocessTransport, ProtocolT]: if not isinstance(command, list): command = [command] if setpgrp: try: # Windows. popen_args["creationflags"] = popen_args.get("creationflags", 0) | subprocess.CREATE_NEW_PROCESS_GROUP # type: ignore except AttributeError: # Unix. if sys.version_info >= (3, 11): popen_args["process_group"] = 0 else: # Before Python 3.11 popen_args["start_new_session"] = True return await asyncio.get_running_loop().subprocess_exec(cls, *command, **popen_args)
class CommandState(enum.Enum): NEW = enum.auto() ACTIVE = enum.auto() CANCELLING = enum.auto() DONE = enum.auto() class BaseCommand(Generic[ProtocolT, T]): def __init__(self, engine: ProtocolT) -> None: self.state = CommandState.NEW self.result: asyncio.Future[T] = asyncio.Future() self.finished: asyncio.Future[None] = asyncio.Future() def _engine_terminated(self, engine: ProtocolT, code: int) -> None: hint = ", binary not compatible with cpu?" if code in [-4, 0xc000001d] else "" exc = EngineTerminatedError(f"engine process died unexpectedly (exit code: {code}{hint})") if self.state == CommandState.ACTIVE: self.engine_terminated(engine, exc) elif self.state == CommandState.CANCELLING: self.finished.set_result(None) elif self.state == CommandState.NEW: self._handle_exception(engine, exc) def _handle_exception(self, engine: ProtocolT, exc: Exception) -> None: if not self.result.done(): self.result.set_exception(exc) else: engine.loop.call_exception_handler({ "message": f"{type(self).__name__} failed after returning preliminary result ({self.result!r})", "exception": exc, "protocol": engine, "transport": engine.transport, }) if not self.finished.done(): self.finished.set_result(None) def set_finished(self) -> None: assert self.state in [CommandState.ACTIVE, CommandState.CANCELLING] if not self.result.done(): self.result.set_exception(EngineError(f"engine command finished before returning result: {self!r}")) self.finished.set_result(None) self.state = CommandState.DONE def _cancel(self, engine: ProtocolT) -> None: if self.state != CommandState.CANCELLING and self.state != CommandState.DONE: assert self.state == CommandState.ACTIVE self.state = CommandState.CANCELLING self.cancel(engine) def _start(self, engine: ProtocolT) -> None: assert self.state == CommandState.NEW self.state = CommandState.ACTIVE try: self.check_initialized(engine) self.start(engine) except EngineError as err: self._handle_exception(engine, err) def _line_received(self, engine: ProtocolT, line: str) -> None: assert self.state in [CommandState.ACTIVE, CommandState.CANCELLING] try: self.line_received(engine, line) except EngineError as err: self._handle_exception(engine, err) def cancel(self, engine: ProtocolT) -> None: pass def check_initialized(self, engine: ProtocolT) -> None: if not engine.initialized: raise EngineError("tried to run command, but engine is not initialized") def start(self, engine: ProtocolT) -> None: raise NotImplementedError def line_received(self, engine: ProtocolT, line: str) -> None: pass def engine_terminated(self, engine: ProtocolT, exc: Exception) -> None: self._handle_exception(engine, exc) def __repr__(self) -> str: return "<{} at {:#x} (state={}, result={}, finished={}>".format(type(self).__name__, id(self), self.state, self.result, self.finished)
[docs]class UciProtocol(Protocol): """ An implementation of the `Universal Chess Interface <https://www.chessprogramming.org/UCI>`_ protocol. """ def __init__(self) -> None: super().__init__() self.options: UciOptionMap[Option] = UciOptionMap() self.config: UciOptionMap[ConfigValue] = UciOptionMap() self.target_config: UciOptionMap[ConfigValue] = UciOptionMap() self.id = {} self.board = chess.Board() self.game: object = None self.first_game = True self.may_ponderhit: Optional[chess.Board] = None self.ponderhit = False async def initialize(self) -> None: class UciInitializeCommand(BaseCommand[UciProtocol, None]): def check_initialized(self, engine: UciProtocol) -> None: if engine.initialized: raise EngineError("engine already initialized") def start(self, engine: UciProtocol) -> None: engine.send_line("uci") def line_received(self, engine: UciProtocol, line: str) -> None: token, remaining = _next_token(line) if line.strip() == "uciok" and not self.result.done(): engine.initialized = True self.result.set_result(None) self.set_finished() elif token == "option": self._option(engine, remaining) elif token == "id": self._id(engine, remaining) def _option(self, engine: UciProtocol, arg: str) -> None: current_parameter = None option_parts: dict[str, str] = {k: "" for k in ["name", "type", "default", "min", "max"]} var = [] parameters = list(option_parts.keys()) + ['var'] option_regex = fr"\s*({'|'.join(parameters)})\s*" for token in re.split(option_regex, arg.strip()): if token == "var" or (token in option_parts and not option_parts[token]): current_parameter = token elif current_parameter == "var": var.append(token) elif current_parameter: option_parts[current_parameter] = token def parse_min_max_value(option_parts: dict[str, str], which: Literal["min", "max"]) -> Optional[int]: try: number = option_parts[which] return int(number) if number else None except ValueError: LOGGER.exception(f"Exception parsing option {which}") return None name = option_parts["name"] type = option_parts["type"] default = option_parts["default"] min = parse_min_max_value(option_parts, "min") max = parse_min_max_value(option_parts, "max") without_default = Option(name, type, None, min, max, var) option = Option(without_default.name, without_default.type, without_default.parse(default), min, max, var) engine.options[option.name] = option if option.default is not None: engine.config[option.name] = option.default if option.default is not None and not option.is_managed() and option.name.lower() != "uci_analysemode": engine.target_config[option.name] = option.default def _id(self, engine: UciProtocol, arg: str) -> None: key, value = _next_token(arg) engine.id[key] = value.strip() return await self.communicate(UciInitializeCommand) def _isready(self) -> None: self.send_line("isready") def _opponent_info(self) -> None: opponent_info = self.config.get("UCI_Opponent") or self.target_config.get("UCI_Opponent") if opponent_info: self.send_line(f"setoption name UCI_Opponent value {opponent_info}") def _ucinewgame(self) -> None: self.send_line("ucinewgame") self._opponent_info() self.first_game = False self.ponderhit = False def debug(self, on: bool = True) -> None: """ Switches debug mode of the engine on or off. This does not interrupt other ongoing operations. """ if on: self.send_line("debug on") else: self.send_line("debug off") async def ping(self) -> None: class UciPingCommand(BaseCommand[UciProtocol, None]): def start(self, engine: UciProtocol) -> None: engine._isready() def line_received(self, engine: UciProtocol, line: str) -> None: if line.strip() == "readyok": self.result.set_result(None) self.set_finished() else: LOGGER.warning("%s: Unexpected engine output: %r", engine, line) return await self.communicate(UciPingCommand) def _changed_options(self, options: ConfigMapping) -> bool: return any(value is None or value != self.config.get(name) for name, value in _chain_config(options, self.target_config)) def _setoption(self, name: str, value: ConfigValue) -> None: try: value = self.options[name].parse(value) except KeyError: raise EngineError("engine does not support option {} (available options: {})".format(name, ", ".join(self.options))) if value is None or value != self.config.get(name): builder = ["setoption name", name] if value is False: builder.append("value false") elif value is True: builder.append("value true") elif value is not None: builder.append("value") builder.append(str(value)) if name != "UCI_Opponent": # sent after ucinewgame self.send_line(" ".join(builder)) self.config[name] = value def _configure(self, options: ConfigMapping) -> None: for name, value in _chain_config(options, self.target_config): if name.lower() in MANAGED_OPTIONS: raise EngineError("cannot set {} which is automatically managed".format(name)) self._setoption(name, value) async def configure(self, options: ConfigMapping) -> None: class UciConfigureCommand(BaseCommand[UciProtocol, None]): def start(self, engine: UciProtocol) -> None: engine._configure(options) engine.target_config.update({name: value for name, value in options.items() if value is not None}) self.result.set_result(None) self.set_finished() return await self.communicate(UciConfigureCommand) def _opponent_configuration(self, *, opponent: Optional[Opponent] = None) -> ConfigMapping: if opponent and opponent.name and "UCI_Opponent" in self.options: rating = opponent.rating or "none" title = opponent.title or "none" player_type = "computer" if opponent.is_engine else "human" return {"UCI_Opponent": f"{title} {rating} {player_type} {opponent.name}"} else: return {} async def send_opponent_information(self, *, opponent: Optional[Opponent] = None, engine_rating: Optional[int] = None) -> None: return await self.configure(self._opponent_configuration(opponent=opponent)) def _position(self, board: chess.Board) -> None: # Select UCI_Variant and UCI_Chess960. uci_variant = type(board).uci_variant if "UCI_Variant" in self.options: self._setoption("UCI_Variant", uci_variant) elif uci_variant != "chess": raise EngineError("engine does not support UCI_Variant") if "UCI_Chess960" in self.options: self._setoption("UCI_Chess960", board.chess960) elif board.chess960: raise EngineError("engine does not support UCI_Chess960") # Send starting position. builder = ["position"] safe_history = all(board.move_stack) root = board.root() if safe_history else board fen = root.fen(shredder=board.chess960, en_passant="fen") if uci_variant == "chess" and fen == chess.STARTING_FEN: builder.append("startpos") else: builder.append("fen") builder.append(fen) # Send moves. if not safe_history: LOGGER.warning("Not transmitting history with null moves to UCI engine") elif board.move_stack: builder.append("moves") builder.extend(move.uci() for move in board.move_stack) self.send_line(" ".join(builder)) self.board = board.copy(stack=False) def _go(self, limit: Limit, *, root_moves: Optional[Iterable[chess.Move]] = None, ponder: bool = False, infinite: bool = False) -> None: builder = ["go"] if ponder: builder.append("ponder") if limit.white_clock is not None: builder.append("wtime") builder.append(str(max(1, round(limit.white_clock * 1000)))) if limit.black_clock is not None: builder.append("btime") builder.append(str(max(1, round(limit.black_clock * 1000)))) if limit.white_inc is not None: builder.append("winc") builder.append(str(round(limit.white_inc * 1000))) if limit.black_inc is not None: builder.append("binc") builder.append(str(round(limit.black_inc * 1000))) if limit.remaining_moves is not None and int(limit.remaining_moves) > 0: builder.append("movestogo") builder.append(str(int(limit.remaining_moves))) if limit.depth is not None: builder.append("depth") builder.append(str(max(1, int(limit.depth)))) if limit.nodes is not None: builder.append("nodes") builder.append(str(max(1, int(limit.nodes)))) if limit.mate is not None: builder.append("mate") builder.append(str(max(1, int(limit.mate)))) if limit.time is not None: builder.append("movetime") builder.append(str(max(1, round(limit.time * 1000)))) if infinite: builder.append("infinite") if root_moves is not None: builder.append("searchmoves") if root_moves: builder.extend(move.uci() for move in root_moves) else: # Work around searchmoves followed by nothing. builder.append("0000") self.send_line(" ".join(builder)) async def play(self, board: chess.Board, limit: Limit, *, game: object = None, info: Info = INFO_NONE, ponder: bool = False, draw_offered: bool = False, root_moves: Optional[Iterable[chess.Move]] = None, options: ConfigMapping = {}, opponent: Optional[Opponent] = None) -> PlayResult: new_options: Dict[str, ConfigValue] = {} for name, value in options.items(): new_options[name] = value new_options.update(self._opponent_configuration(opponent=opponent)) class UciPlayCommand(BaseCommand[UciProtocol, PlayResult]): def __init__(self, engine: UciProtocol): super().__init__(engine) # May ponderhit only in the same game and with unchanged target # options. The managed options UCI_AnalyseMode, Ponder, and # MultiPV never change between pondering play commands. engine.may_ponderhit = board if ponder and not engine.first_game and game == engine.game and not engine._changed_options(new_options) else None def start(self, engine: UciProtocol) -> None: self.info: InfoDict = {} self.pondering: Optional[chess.Board] = None self.sent_isready = False self.start_time = time.perf_counter() if engine.ponderhit: engine.ponderhit = False engine.send_line("ponderhit") return if "UCI_AnalyseMode" in engine.options and "UCI_AnalyseMode" not in engine.target_config and all(name.lower() != "uci_analysemode" for name in new_options): engine._setoption("UCI_AnalyseMode", False) if "Ponder" in engine.options: engine._setoption("Ponder", ponder) if "MultiPV" in engine.options: engine._setoption("MultiPV", engine.options["MultiPV"].default) new_opponent = new_options.get("UCI_Opponent") or engine.target_config.get("UCI_Opponent") opponent_changed = new_opponent != engine.config.get("UCI_Opponent") engine._configure(new_options) if engine.first_game or engine.game != game or opponent_changed: engine.game = game engine._ucinewgame() self.sent_isready = True engine._isready() else: self._readyok(engine) def line_received(self, engine: UciProtocol, line: str) -> None: token, remaining = _next_token(line) if token == "info": self._info(engine, remaining) elif token == "bestmove": self._bestmove(engine, remaining) elif line.strip() == "readyok" and self.sent_isready: self._readyok(engine) else: LOGGER.warning("%s: Unexpected engine output: %r", engine, line) def _readyok(self, engine: UciProtocol) -> None: self.sent_isready = False engine._position(board) engine._go(limit, root_moves=root_moves) def _info(self, engine: UciProtocol, arg: str) -> None: if not self.pondering: self.info.update(_parse_uci_info(arg, engine.board, info)) def _bestmove(self, engine: UciProtocol, arg: str) -> None: if self.pondering: self.pondering = None elif not self.result.cancelled(): best = _parse_uci_bestmove(engine.board, arg) self.result.set_result(PlayResult(best.move, best.ponder, self.info)) if ponder and best.move and best.ponder: self.pondering = board.copy() self.pondering.push(best.move) self.pondering.push(best.ponder) engine._position(self.pondering) # Adjust clocks for pondering. time_used = time.perf_counter() - self.start_time ponder_limit = copy.copy(limit) if ponder_limit.white_clock is not None: ponder_limit.white_clock += (ponder_limit.white_inc or 0.0) if self.pondering.turn == chess.WHITE: ponder_limit.white_clock -= time_used if ponder_limit.black_clock is not None: ponder_limit.black_clock += (ponder_limit.black_inc or 0.0) if self.pondering.turn == chess.BLACK: ponder_limit.black_clock -= time_used if ponder_limit.remaining_moves: ponder_limit.remaining_moves -= 1 engine._go(ponder_limit, ponder=True) if not self.pondering: self.end(engine) def end(self, engine: UciProtocol) -> None: engine.may_ponderhit = None self.set_finished() def cancel(self, engine: UciProtocol) -> None: if engine.may_ponderhit and self.pondering and engine.may_ponderhit.move_stack == self.pondering.move_stack and engine.may_ponderhit == self.pondering: engine.ponderhit = True self.end(engine) else: engine.send_line("stop") def engine_terminated(self, engine: UciProtocol, exc: Exception) -> None: # Allow terminating engine while pondering. if not self.result.done(): super().engine_terminated(engine, exc) return await self.communicate(UciPlayCommand) async def analysis(self, board: chess.Board, limit: Optional[Limit] = None, *, multipv: Optional[int] = None, game: object = None, info: Info = INFO_ALL, root_moves: Optional[Iterable[chess.Move]] = None, options: ConfigMapping = {}) -> AnalysisResult: class UciAnalysisCommand(BaseCommand[UciProtocol, AnalysisResult]): def start(self, engine: UciProtocol) -> None: self.analysis = AnalysisResult(stop=lambda: self.cancel(engine)) self.sent_isready = False if "Ponder" in engine.options: engine._setoption("Ponder", False) if "UCI_AnalyseMode" in engine.options and "UCI_AnalyseMode" not in engine.target_config and all(name.lower() != "uci_analysemode" for name in options): engine._setoption("UCI_AnalyseMode", True) if "MultiPV" in engine.options or (multipv and multipv > 1): engine._setoption("MultiPV", 1 if multipv is None else multipv) engine._configure(options) if engine.first_game or engine.game != game: engine.game = game engine._ucinewgame() self.sent_isready = True engine._isready() else: self._readyok(engine) def line_received(self, engine: UciProtocol, line: str) -> None: token, remaining = _next_token(line) if token == "info": self._info(engine, remaining) elif token == "bestmove": self._bestmove(engine, remaining) elif line.strip() == "readyok" and self.sent_isready: self._readyok(engine) else: LOGGER.warning("%s: Unexpected engine output: %r", engine, line) def _readyok(self, engine: UciProtocol) -> None: self.sent_isready = False engine._position(board) if limit: engine._go(limit, root_moves=root_moves) else: engine._go(Limit(), root_moves=root_moves, infinite=True) self.result.set_result(self.analysis) def _info(self, engine: UciProtocol, arg: str) -> None: self.analysis.post(_parse_uci_info(arg, engine.board, info)) def _bestmove(self, engine: UciProtocol, arg: str) -> None: if not self.result.done(): raise EngineError("was not searching, but engine sent bestmove") best = _parse_uci_bestmove(engine.board, arg) self.set_finished() self.analysis.set_finished(best) def cancel(self, engine: UciProtocol) -> None: engine.send_line("stop") def engine_terminated(self, engine: UciProtocol, exc: Exception) -> None: LOGGER.debug("%s: Closing analysis because engine has been terminated (error: %s)", engine, exc) self.analysis.set_exception(exc) return await self.communicate(UciAnalysisCommand) async def send_game_result(self, board: chess.Board, winner: Optional[Color] = None, game_ending: Optional[str] = None, game_complete: bool = True) -> None: pass async def quit(self) -> None: self.send_line("quit") await asyncio.shield(self.returncode)
UCI_REGEX = re.compile(r"^[a-h][1-8][a-h][1-8][pnbrqk]?|[PNBRQK]@[a-h][1-8]|0000\Z") def _create_variation_line(root_board: chess.Board, line: str) -> tuple[list[chess.Move], str]: board = root_board.copy(stack=False) currline: list[chess.Move] = [] while True: next_move, remaining_line_after_move = _next_token(line) if UCI_REGEX.match(next_move): currline.append(board.push_uci(next_move)) line = remaining_line_after_move else: return currline, line def _parse_uci_info(arg: str, root_board: chess.Board, selector: Info = INFO_ALL) -> InfoDict: info: InfoDict = {} if not selector: return info remaining_line = arg while remaining_line: parameter, remaining_line = _next_token(remaining_line) if parameter == "string": info["string"] = remaining_line break elif parameter in ["depth", "seldepth", "nodes", "multipv", "currmovenumber", "hashfull", "nps", "tbhits", "cpuload"]: try: number, remaining_line = _next_token(remaining_line) info[parameter] = int(number) # type: ignore except (ValueError, IndexError): LOGGER.error("Exception parsing %s from info: %r", parameter, arg) elif parameter == "time": try: time_ms, remaining_line = _next_token(remaining_line) info["time"] = int(time_ms) / 1000.0 except (ValueError, IndexError): LOGGER.error("Exception parsing %s from info: %r", parameter, arg) elif parameter == "ebf": try: number, remaining_line = _next_token(remaining_line) info["ebf"] = float(number) except (ValueError, IndexError): LOGGER.error("Exception parsing %s from info: %r", parameter, arg) elif parameter == "score" and selector & INFO_SCORE: try: kind, remaining_line = _next_token(remaining_line) value, remaining_line = _next_token(remaining_line) token, remaining_after_token = _next_token(remaining_line) if token in ["lowerbound", "upperbound"]: info[token] = True # type: ignore remaining_line = remaining_after_token if kind == "cp": info["score"] = PovScore(Cp(int(value)), root_board.turn) elif kind == "mate": info["score"] = PovScore(Mate(int(value)), root_board.turn) else: LOGGER.error("Unknown score kind %r in info (expected cp or mate): %r", kind, arg) except (ValueError, IndexError): LOGGER.error("Exception parsing score from info: %r", arg) elif parameter == "currmove": try: current_move, remaining_line = _next_token(remaining_line) info["currmove"] = chess.Move.from_uci(current_move) except (ValueError, IndexError): LOGGER.error("Exception parsing currmove from info: %r", arg) elif parameter == "currline" and selector & INFO_CURRLINE: try: if "currline" not in info: info["currline"] = {} cpunr_text, remaining_line = _next_token(remaining_line) cpunr = int(cpunr_text) currline, remaining_line = _create_variation_line(root_board, remaining_line) info["currline"][cpunr] = currline except (ValueError, IndexError): LOGGER.error("Exception parsing currline from info: %r, position at root: %s", arg, root_board.fen()) elif parameter == "refutation" and selector & INFO_REFUTATION: try: if "refutation" not in info: info["refutation"] = {} board = root_board.copy(stack=False) refuted_text, remaining_line = _next_token(remaining_line) refuted = board.push_uci(refuted_text) refuted_by, remaining_line = _create_variation_line(board, remaining_line) info["refutation"][refuted] = refuted_by except (ValueError, IndexError): LOGGER.error("Exception parsing refutation from info: %r, position at root: %s", arg, root_board.fen()) elif parameter == "pv" and selector & INFO_PV: try: pv, remaining_line = _create_variation_line(root_board, remaining_line) info["pv"] = pv except (ValueError, IndexError): LOGGER.error("Exception parsing pv from info: %r, position at root: %s", arg, root_board.fen()) elif parameter == "wdl": try: wins, remaining_line = _next_token(remaining_line) draws, remaining_line = _next_token(remaining_line) losses, remaining_line = _next_token(remaining_line) info["wdl"] = PovWdl(Wdl(int(wins), int(draws), int(losses)), root_board.turn) except (ValueError, IndexError): LOGGER.error("Exception parsing wdl from info: %r", arg) return info def _parse_uci_bestmove(board: chess.Board, args: str) -> BestMove: tokens = args.split() move = None ponder = None if tokens and tokens[0] not in ["(none)", "NULL"]: try: # AnMon 5.75 uses uppercase letters to denote promotion types. move = board.push_uci(tokens[0].lower()) except ValueError as err: raise EngineError(err) try: # Houdini 1.5 sends NULL instead of skipping the token. if len(tokens) >= 3 and tokens[1] == "ponder" and tokens[2] not in ["(none)", "NULL"]: ponder = board.parse_uci(tokens[2].lower()) except ValueError: LOGGER.exception("Engine sent invalid ponder move") finally: board.pop() return BestMove(move, ponder) def _chain_config(a: ConfigMapping, b: ConfigMapping) -> Iterator[Tuple[str, ConfigValue]]: for name, value in a.items(): yield name, value for name, value in b.items(): if name not in a: yield name, value class UciOptionMap(MutableMapping[str, T]): """Dictionary with case-insensitive keys.""" def __init__(self, data: Optional[Iterable[Tuple[str, T]]] = None, **kwargs: T) -> None: self._store: Dict[str, Tuple[str, T]] = {} if data is None: data = {} self.update(data, **kwargs) def __setitem__(self, key: str, value: T) -> None: self._store[key.lower()] = (key, value) def __getitem__(self, key: str) -> T: return self._store[key.lower()][1] def __delitem__(self, key: str) -> None: del self._store[key.lower()] def __iter__(self) -> Iterator[str]: return (casedkey for casedkey, _ in self._store.values()) def __len__(self) -> int: return len(self._store) def __eq__(self, other: object) -> bool: try: for key, value in self.items(): if key not in other or other[key] != value: # type: ignore return False for key, value in other.items(): # type: ignore if key not in self or self[key] != value: return False return True except (TypeError, AttributeError): return NotImplemented def copy(self) -> UciOptionMap[T]: return type(self)(self._store.values()) def __copy__(self) -> UciOptionMap[T]: return self.copy() def __repr__(self) -> str: return f"{type(self).__name__}({dict(self.items())!r})" XBOARD_ERROR_REGEX = re.compile(r"^\s*(Error|Illegal move)(\s*\([^()]+\))?\s*:")
[docs]class XBoardProtocol(Protocol): """ An implementation of the `XBoard protocol <http://hgm.nubati.net/CECP.html>`__ (CECP). """ def __init__(self) -> None: super().__init__() self.features: Dict[str, Union[int, str]] = {} self.id = {} self.options = { "random": Option("random", "check", False, None, None, None), "computer": Option("computer", "check", False, None, None, None), "name": Option("name", "string", "", None, None, None), "engine_rating": Option("engine_rating", "spin", 0, None, None, None), "opponent_rating": Option("opponent_rating", "spin", 0, None, None, None) } self.config: Dict[str, ConfigValue] = {} self.target_config: Dict[str, ConfigValue] = {} self.board = chess.Board() self.game: object = None self.clock_id: object = None self.first_game = True async def initialize(self) -> None: class XBoardInitializeCommand(BaseCommand[XBoardProtocol, None]): def check_initialized(self, engine: XBoardProtocol) -> None: if engine.initialized: raise EngineError("engine already initialized") def start(self, engine: XBoardProtocol) -> None: engine.send_line("xboard") engine.send_line("protover 2") self.timeout_handle = engine.loop.call_later(2.0, lambda: self.timeout(engine)) def timeout(self, engine: XBoardProtocol) -> None: LOGGER.error("%s: Timeout during initialization", engine) self.end(engine) def line_received(self, engine: XBoardProtocol, line: str) -> None: token, remaining = _next_token(line) if token.startswith("#"): pass elif token == "feature": self._feature(engine, remaining) elif XBOARD_ERROR_REGEX.match(line): raise EngineError(line) def _feature(self, engine: XBoardProtocol, arg: str) -> None: for feature in shlex.split(arg): key, value = feature.split("=", 1) if key == "option": option = _parse_xboard_option(value) if option.name not in ["random", "computer", "cores", "memory"]: engine.options[option.name] = option else: try: engine.features[key] = int(value) except ValueError: engine.features[key] = value if "done" in engine.features: self.timeout_handle.cancel() if engine.features.get("done"): self.end(engine) def end(self, engine: XBoardProtocol) -> None: if not engine.features.get("ping", 0): self.result.set_exception(EngineError("xboard engine did not declare required feature: ping")) self.set_finished() return if not engine.features.get("setboard", 0): self.result.set_exception(EngineError("xboard engine did not declare required feature: setboard")) self.set_finished() return if not engine.features.get("reuse", 1): LOGGER.warning("%s: Rejecting feature reuse=0", engine) engine.send_line("rejected reuse") if not engine.features.get("sigterm", 1): LOGGER.warning("%s: Rejecting feature sigterm=0", engine) engine.send_line("rejected sigterm") if engine.features.get("san", 0): LOGGER.warning("%s: Rejecting feature san=1", engine) engine.send_line("rejected san") if "myname" in engine.features: engine.id["name"] = str(engine.features["myname"]) if engine.features.get("memory", 0): engine.options["memory"] = Option("memory", "spin", 16, 1, None, None) engine.send_line("accepted memory") if engine.features.get("smp", 0): engine.options["cores"] = Option("cores", "spin", 1, 1, None, None) engine.send_line("accepted smp") if engine.features.get("egt"): for egt in str(engine.features["egt"]).split(","): name = f"egtpath {egt}" engine.options[name] = Option(name, "path", None, None, None, None) engine.send_line("accepted egt") for option in engine.options.values(): if option.default is not None: engine.config[option.name] = option.default if option.default is not None and not option.is_managed(): engine.target_config[option.name] = option.default engine.initialized = True self.result.set_result(None) self.set_finished() return await self.communicate(XBoardInitializeCommand) def _ping(self, n: int) -> None: self.send_line(f"ping {n}") def _variant(self, variant: Optional[str]) -> None: variants = str(self.features.get("variants", "")).split(",") if not variant or variant not in variants: raise EngineError("unsupported xboard variant: {} (available: {})".format(variant, ", ".join(variants))) self.send_line(f"variant {variant}") def _new(self, board: chess.Board, game: object, options: ConfigMapping, opponent: Optional[Opponent] = None) -> None: self._configure(options) self._configure(self._opponent_configuration(opponent=opponent)) # Set up starting position. root = board.root() new_options = any(param in options for param in ("random", "computer")) new_game = self.first_game or self.game != game or new_options or opponent or root != self.board.root() self.game = game self.first_game = False if new_game: self.board = root self.send_line("new") variant = type(board).xboard_variant if variant == "normal" and board.chess960: self._variant("fischerandom") elif variant != "normal": self._variant(variant) if self.config.get("random"): self.send_line("random") opponent_name = self.config.get("name") if opponent_name and self.features.get("name", True): self.send_line(f"name {opponent_name}") opponent_rating = self.config.get("opponent_rating") engine_rating = self.config.get("engine_rating") if engine_rating or opponent_rating: self.send_line(f"rating {engine_rating or 0} {opponent_rating or 0}") if self.config.get("computer"): self.send_line("computer") self.send_line("force") if new_game: fen = root.fen(shredder=board.chess960, en_passant="fen") if variant != "normal" or fen != chess.STARTING_FEN or board.chess960: self.send_line(f"setboard {fen}") # Undo moves until common position. common_stack_len = 0 if not new_game: for left, right in zip(self.board.move_stack, board.move_stack): if left == right: common_stack_len += 1 else: break while len(self.board.move_stack) > common_stack_len + 1: self.send_line("remove") self.board.pop() self.board.pop() while len(self.board.move_stack) > common_stack_len: self.send_line("undo") self.board.pop() # Play moves from board stack. for move in board.move_stack[common_stack_len:]: if not move: LOGGER.warning("Null move (in %s) may not be supported by all XBoard engines", self.board.fen()) prefix = "usermove " if self.features.get("usermove", 0) else "" self.send_line(prefix + self.board.xboard(move)) self.board.push(move) async def ping(self) -> None: class XBoardPingCommand(BaseCommand[XBoardProtocol, None]): def start(self, engine: XBoardProtocol) -> None: n = id(self) & 0xffff self.pong = f"pong {n}" engine._ping(n) def line_received(self, engine: XBoardProtocol, line: str) -> None: if line == self.pong: self.result.set_result(None) self.set_finished() elif not line.startswith("#"): LOGGER.warning("%s: Unexpected engine output: %r", engine, line) elif XBOARD_ERROR_REGEX.match(line): raise EngineError(line) return await self.communicate(XBoardPingCommand) async def play(self, board: chess.Board, limit: Limit, *, game: object = None, info: Info = INFO_NONE, ponder: bool = False, draw_offered: bool = False, root_moves: Optional[Iterable[chess.Move]] = None, options: ConfigMapping = {}, opponent: Optional[Opponent] = None) -> PlayResult: if root_moves is not None: raise EngineError("play with root_moves, but xboard supports 'include' only in analysis mode") class XBoardPlayCommand(BaseCommand[XBoardProtocol, PlayResult]): def start(self, engine: XBoardProtocol) -> None: self.play_result = PlayResult(None, None) self.stopped = False self.pong_after_move: Optional[str] = None self.pong_after_ponder: Optional[str] = None # Set game, position and configure. engine._new(board, game, options, opponent) # Limit or time control. clock = limit.white_clock if board.turn else limit.black_clock increment = limit.white_inc if board.turn else limit.black_inc if limit.clock_id is None or limit.clock_id != engine.clock_id: self._send_time_control(engine, clock, increment) engine.clock_id = limit.clock_id if limit.nodes is not None: if limit.time is not None or limit.white_clock is not None or limit.black_clock is not None or increment is not None: raise EngineError("xboard does not support mixing node limits with time limits") if "nps" not in engine.features: LOGGER.warning("%s: Engine did not explicitly declare support for node limits (feature nps=?)") elif not engine.features["nps"]: raise EngineError("xboard engine does not support node limits (feature nps=0)") engine.send_line("nps 1") engine.send_line(f"st {max(1, int(limit.nodes))}") if limit.depth is not None: engine.send_line(f"sd {max(1, int(limit.depth))}") if limit.white_clock is not None: engine.send_line("{} {}".format("time" if board.turn else "otim", max(1, round(limit.white_clock * 100)))) if limit.black_clock is not None: engine.send_line("{} {}".format("otim" if board.turn else "time", max(1, round(limit.black_clock * 100)))) if draw_offered and engine.features.get("draw", 1): engine.send_line("draw") # Start thinking. engine.send_line("post" if info else "nopost") engine.send_line("hard" if ponder else "easy") engine.send_line("go") def line_received(self, engine: XBoardProtocol, line: str) -> None: token, remaining = _next_token(line) if token == "move": self._move(engine, remaining.strip()) elif token == "Hint:": self._hint(engine, remaining.strip()) elif token == "pong": pong_line = f"{token} {remaining.strip()}" if pong_line == self.pong_after_move: if not self.result.done(): self.result.set_result(self.play_result) if not ponder: self.set_finished() elif pong_line == self.pong_after_ponder: if not self.result.done(): self.result.set_result(self.play_result) self.set_finished() elif f"{token} {remaining.strip()}" == "offer draw": if not self.result.done(): self.play_result.draw_offered = True self._ping_after_move(engine) elif line.strip() == "resign": if not self.result.done(): self.play_result.resigned = True self._ping_after_move(engine) elif token in ["1-0", "0-1", "1/2-1/2"]: if "resign" in line and not self.result.done(): self.play_result.resigned = True self._ping_after_move(engine) elif token.startswith("#"): pass elif XBOARD_ERROR_REGEX.match(line): engine.first_game = True # Board state might no longer be in sync raise EngineError(line) elif len(line.split()) >= 4 and line.lstrip()[0].isdigit(): self._post(engine, line) else: LOGGER.warning("%s: Unexpected engine output: %r", engine, line) def _send_time_control(self, engine: XBoardProtocol, clock: Optional[float], increment: Optional[float]) -> None: if limit.remaining_moves or clock is not None or increment is not None: base_mins, base_secs = divmod(int(clock or 0), 60) engine.send_line(f"level {limit.remaining_moves or 0} {base_mins}:{base_secs:02d} {increment or 0}") if limit.time is not None: engine.send_line(f"st {max(0.01, limit.time)}") def _post(self, engine: XBoardProtocol, line: str) -> None: if not self.result.done(): self.play_result.info = _parse_xboard_post(line, engine.board, info) def _move(self, engine: XBoardProtocol, arg: str) -> None: if not self.result.done() and self.play_result.move is None: try: self.play_result.move = engine.board.push_xboard(arg) except ValueError as err: self.result.set_exception(EngineError(err)) else: self._ping_after_move(engine) else: try: engine.board.push_xboard(arg) except ValueError: LOGGER.exception("Exception playing unexpected move") def _hint(self, engine: XBoardProtocol, arg: str) -> None: if not self.result.done() and self.play_result.move is not None and self.play_result.ponder is None: try: self.play_result.ponder = engine.board.parse_xboard(arg) except ValueError: LOGGER.exception("Exception parsing hint") else: LOGGER.warning("Unexpected hint: %r", arg) def _ping_after_move(self, engine: XBoardProtocol) -> None: if self.pong_after_move is None: n = id(self) & 0xffff self.pong_after_move = f"pong {n}" engine._ping(n) def cancel(self, engine: XBoardProtocol) -> None: if self.stopped: return self.stopped = True if self.result.cancelled(): engine.send_line("?") if ponder: engine.send_line("easy") n = (id(self) + 1) & 0xffff self.pong_after_ponder = f"pong {n}" engine._ping(n) def engine_terminated(self, engine: XBoardProtocol, exc: Exception) -> None: # Allow terminating engine while pondering. if not self.result.done(): super().engine_terminated(engine, exc) return await self.communicate(XBoardPlayCommand) async def analysis(self, board: chess.Board, limit: Optional[Limit] = None, *, multipv: Optional[int] = None, game: object = None, info: Info = INFO_ALL, root_moves: Optional[Iterable[chess.Move]] = None, options: ConfigMapping = {}) -> AnalysisResult: if multipv is not None: raise EngineError("xboard engine does not support multipv") if limit is not None and (limit.white_clock is not None or limit.black_clock is not None): raise EngineError("xboard analysis does not support clock limits") class XBoardAnalysisCommand(BaseCommand[XBoardProtocol, AnalysisResult]): def start(self, engine: XBoardProtocol) -> None: self.stopped = False self.best_move: Optional[chess.Move] = None self.analysis = AnalysisResult(stop=lambda: self.cancel(engine)) self.final_pong: Optional[str] = None engine._new(board, game, options) if root_moves is not None: if not engine.features.get("exclude", 0): raise EngineError("xboard engine does not support root_moves (feature exclude=0)") engine.send_line("exclude all") for move in root_moves: engine.send_line(f"include {engine.board.xboard(move)}") engine.send_line("post") engine.send_line("analyze") self.result.set_result(self.analysis) if limit is not None and limit.time is not None: self.time_limit_handle: Optional[asyncio.Handle] = engine.loop.call_later(limit.time, lambda: self.cancel(engine)) else: self.time_limit_handle = None def line_received(self, engine: XBoardProtocol, line: str) -> None: token, remaining = _next_token(line) if token.startswith("#"): pass elif len(line.split()) >= 4 and line.lstrip()[0].isdigit(): self._post(engine, line) elif f"{token} {remaining.strip()}" == self.final_pong: self.end(engine) elif XBOARD_ERROR_REGEX.match(line): engine.first_game = True # Board state might no longer be in sync raise EngineError(line) else: LOGGER.warning("%s: Unexpected engine output: %r", engine, line) def _post(self, engine: XBoardProtocol, line: str) -> None: post_info = _parse_xboard_post(line, engine.board, info) self.analysis.post(post_info) pv = post_info.get("pv") if pv: self.best_move = pv[0] if limit is not None: if limit.time is not None and post_info.get("time", 0) >= limit.time: self.cancel(engine) elif limit.nodes is not None and post_info.get("nodes", 0) >= limit.nodes: self.cancel(engine) elif limit.depth is not None and post_info.get("depth", 0) >= limit.depth: self.cancel(engine) elif limit.mate is not None and "score" in post_info: if post_info["score"].relative >= Mate(limit.mate): self.cancel(engine) def end(self, engine: XBoardProtocol) -> None: if self.time_limit_handle: self.time_limit_handle.cancel() self.set_finished() self.analysis.set_finished(BestMove(self.best_move, None)) def cancel(self, engine: XBoardProtocol) -> None: if self.stopped: return self.stopped = True engine.send_line(".") engine.send_line("exit") n = id(self) & 0xffff self.final_pong = f"pong {n}" engine._ping(n) def engine_terminated(self, engine: XBoardProtocol, exc: Exception) -> None: LOGGER.debug("%s: Closing analysis because engine has been terminated (error: %s)", engine, exc) if self.time_limit_handle: self.time_limit_handle.cancel() self.analysis.set_exception(exc) return await self.communicate(XBoardAnalysisCommand) def _setoption(self, name: str, value: ConfigValue) -> None: if value is not None and value == self.config.get(name): return try: option = self.options[name] except KeyError: raise EngineError(f"unsupported xboard option or command: {name}") self.config[name] = value = option.parse(value) if name in ["random", "computer", "name", "engine_rating", "opponent_rating"]: # Applied in _new. pass elif name in ["memory", "cores"] or name.startswith("egtpath "): self.send_line(f"{name} {value}") elif value is None: self.send_line(f"option {name}") elif value is True: self.send_line(f"option {name}=1") elif value is False: self.send_line(f"option {name}=0") else: self.send_line(f"option {name}={value}") def _configure(self, options: ConfigMapping) -> None: for name, value in _chain_config(options, self.target_config): if name.lower() in MANAGED_OPTIONS: raise EngineError(f"cannot set {name} which is automatically managed") self._setoption(name, value) async def configure(self, options: ConfigMapping) -> None: class XBoardConfigureCommand(BaseCommand[XBoardProtocol, None]): def start(self, engine: XBoardProtocol) -> None: engine._configure(options) engine.target_config.update({name: value for name, value in options.items() if value is not None}) self.result.set_result(None) self.set_finished() return await self.communicate(XBoardConfigureCommand) def _opponent_configuration(self, *, opponent: Optional[Opponent] = None, engine_rating: Optional[int] = None) -> ConfigMapping: if opponent is None: return {} opponent_info: Dict[str, Union[int, bool, str]] = {"engine_rating": engine_rating or self.target_config.get("engine_rating") or 0, "opponent_rating": opponent.rating or 0, "computer": opponent.is_engine or False} if opponent.name and self.features.get("name", True): opponent_info["name"] = f"{opponent.title or ''} {opponent.name}".strip() return opponent_info async def send_opponent_information(self, *, opponent: Optional[Opponent] = None, engine_rating: Optional[int] = None) -> None: return await self.configure(self._opponent_configuration(opponent=opponent, engine_rating=engine_rating)) async def send_game_result(self, board: chess.Board, winner: Optional[Color] = None, game_ending: Optional[str] = None, game_complete: bool = True) -> None: class XBoardGameResultCommand(BaseCommand[XBoardProtocol, None]): def start(self, engine: XBoardProtocol) -> None: if game_ending and any(c in game_ending for c in "{}\n\r"): raise EngineError(f"invalid line break or curly braces in game ending message: {game_ending!r}") engine._new(board, engine.game, {}) # Send final moves to engine. outcome = board.outcome(claim_draw=True) if not game_complete: result = "*" ending = game_ending or "" elif winner is not None or game_ending: result = "1-0" if winner == chess.WHITE else "0-1" if winner == chess.BLACK else "1/2-1/2" ending = game_ending or "" elif outcome is not None and outcome.winner is not None: result = outcome.result() winning_color = "White" if outcome.winner == chess.WHITE else "Black" is_checkmate = outcome.termination == chess.Termination.CHECKMATE ending = f"{winning_color} {'mates' if is_checkmate else 'variant win'}" elif outcome is not None: result = outcome.result() ending = outcome.termination.name.capitalize().replace("_", " ") else: result = "*" ending = "" ending_text = f"{{{ending}}}" if ending else "" engine.send_line(f"result {result} {ending_text}".strip()) self.result.set_result(None) self.set_finished() return await self.communicate(XBoardGameResultCommand) async def quit(self) -> None: self.send_line("quit") await asyncio.shield(self.returncode)
def _parse_xboard_option(feature: str) -> Option: params = feature.split() name = params[0] type = params[1][1:] default: Optional[ConfigValue] = None min = None max = None var = None if type == "combo": var = [] choices = params[2:] for choice in choices: if choice == "///": continue elif choice[0] == "*": default = choice[1:] var.append(choice[1:]) else: var.append(choice) elif type == "check": default = int(params[2]) elif type in ["string", "file", "path"]: if len(params) > 2: default = params[2] else: default = "" elif type == "spin": default = int(params[2]) min = int(params[3]) max = int(params[4]) return Option(name, type, default, min, max, var) def _parse_xboard_post(line: str, root_board: chess.Board, selector: Info = INFO_ALL) -> InfoDict: # Format: depth score time nodes [seldepth [nps [tbhits]]] pv info: InfoDict = {} # Split leading integer tokens from pv. pv_tokens = line.split() integer_tokens = [] while pv_tokens: token = pv_tokens.pop(0) try: integer_tokens.append(int(token)) except ValueError: pv_tokens.insert(0, token) break if len(integer_tokens) < 4: return info # Required integer tokens. info["depth"] = integer_tokens.pop(0) cp = integer_tokens.pop(0) info["time"] = int(integer_tokens.pop(0)) / 100 info["nodes"] = int(integer_tokens.pop(0)) # Score. if cp <= -100000: score: Score = Mate(cp + 100000) elif cp == 100000: score = MateGiven elif cp >= 100000: score = Mate(cp - 100000) else: score = Cp(cp) info["score"] = PovScore(score, root_board.turn) # Optional integer tokens. if integer_tokens: info["seldepth"] = integer_tokens.pop(0) if integer_tokens: info["nps"] = integer_tokens.pop(0) while len(integer_tokens) > 1: # Reserved for future extensions. integer_tokens.pop(0) if integer_tokens: info["tbhits"] = integer_tokens.pop(0) # Principal variation. pv = [] board = root_board.copy(stack=False) for token in pv_tokens: if token.rstrip(".").isdigit(): continue try: pv.append(board.push_xboard(token)) except ValueError: break if not (selector & INFO_PV): break info["pv"] = pv return info def _next_token(line: str) -> tuple[str, str]: """Get the next token in a whitespace-delimited line of text. The result is returned as a 2-part tuple of strings. If the input line is empty or all whitespace, then the result is two empty strings. If the input line is not empty and not completely whitespace, then the first element of the returned tuple is a single word with leading and trailing whitespace removed. The second element is the unchanged rest of the line.""" parts = line.split(maxsplit=1) return (parts[0] if parts else "", parts[1] if len(parts) == 2 else "")
[docs]class BestMove: """Returned by :func:`chess.engine.AnalysisResult.wait()`.""" move: Optional[chess.Move] """The best move according to the engine, or ``None``.""" ponder: Optional[chess.Move] """The response that the engine expects after *move*, or ``None``.""" def __init__(self, move: Optional[chess.Move], ponder: Optional[chess.Move]): self.move = move self.ponder = ponder def __repr__(self) -> str: return "<{} at {:#x} (move={}, ponder={}>".format( type(self).__name__, id(self), self.move, self.ponder)
[docs]class AnalysisResult: """ Handle to ongoing engine analysis. Returned by :func:`chess.engine.Protocol.analysis()`. Can be used to asynchronously iterate over information sent by the engine. Automatically stops the analysis when used as a context manager. """ multipv: List[InfoDict] """ A list of dictionaries with aggregated information sent by the engine. One item for each root move. """ def __init__(self, stop: Optional[Callable[[], None]] = None): self._stop = stop self._queue: asyncio.Queue[InfoDict] = asyncio.Queue() self._posted_kork = False self._seen_kork = False self._finished: asyncio.Future[BestMove] = asyncio.Future() self.multipv = [{}] def post(self, info: InfoDict) -> None: # Empty dictionary reserved for kork. if not info: return multipv = info.get("multipv", 1) while len(self.multipv) < multipv: self.multipv.append({}) self.multipv[multipv - 1].update(info) self._queue.put_nowait(info) def _kork(self) -> None: if not self._posted_kork: self._posted_kork = True self._queue.put_nowait({}) def set_finished(self, best: BestMove) -> None: if not self._finished.done(): self._finished.set_result(best) self._kork() def set_exception(self, exc: Exception) -> None: self._finished.set_exception(exc) self._kork() @property def info(self) -> InfoDict: """ A dictionary of aggregated information sent by the engine. This is actually an alias for ``multipv[0]``. """ return self.multipv[0]
[docs] def stop(self) -> None: """Stops the analysis as soon as possible.""" if self._stop and not self._posted_kork: self._stop() self._stop = None
[docs] async def wait(self) -> BestMove: """Waits until the analysis is finished.""" return await self._finished
[docs] async def get(self) -> InfoDict: """ Waits for the next dictionary of information from the engine and returns it. It might be more convenient to use ``async for info in analysis: ...``. :raises: :exc:`chess.engine.AnalysisComplete` if the analysis is complete (or has been stopped) and all information has been consumed. Use :func:`~chess.engine.AnalysisResult.next()` if you prefer to get ``None`` instead of an exception. """ if self._seen_kork: raise AnalysisComplete() info = await self._queue.get() if not info: # Empty dictionary marks end. self._seen_kork = True await self._finished raise AnalysisComplete() return info
[docs] def would_block(self) -> bool: """ Checks if calling :func:`~chess.engine.AnalysisResult.get()`, calling :func:`~chess.engine.AnalysisResult.next()`, or advancing the iterator one step would require waiting for the engine. These functions would return immediately if information is pending (queue is not :func:`empty <chess.engine.AnalysisResult.empty()>`) or if the search is finished. """ return not self._seen_kork and self._queue.empty()
[docs] def empty(self) -> bool: """ Checks if all current information has been consumed. If the queue is empty, but the analysis is still ongoing, then further information can become available in the future. """ return self._seen_kork or self._queue.qsize() <= self._posted_kork
async def next(self) -> Optional[InfoDict]: try: return await self.get() except AnalysisComplete: return None def __aiter__(self) -> AnalysisResult: return self async def __anext__(self) -> InfoDict: try: return await self.get() except AnalysisComplete: raise StopAsyncIteration def __enter__(self) -> AnalysisResult: return self def __exit__(self, exc_type: Optional[Type[BaseException]], exc_value: Optional[BaseException], traceback: Optional[TracebackType]) -> None: self.stop()
[docs]async def popen_uci(command: Union[str, List[str]], *, setpgrp: bool = False, **popen_args: Any) -> Tuple[asyncio.SubprocessTransport, UciProtocol]: """ Spawns and initializes a UCI engine. :param command: Path of the engine executable, or a list including the path and arguments. :param setpgrp: Open the engine process in a new process group. This will stop signals (such as keyboard interrupts) from propagating from the parent process. Defaults to ``False``. :param popen_args: Additional arguments for `popen <https://docs.python.org/3/library/subprocess.html#popen-constructor>`_. Do not set ``stdin``, ``stdout``, ``bufsize`` or ``universal_newlines``. Returns a subprocess transport and engine protocol pair. """ transport, protocol = await UciProtocol.popen(command, setpgrp=setpgrp, **popen_args) try: await protocol.initialize() except: transport.close() raise return transport, protocol
[docs]async def popen_xboard(command: Union[str, List[str]], *, setpgrp: bool = False, **popen_args: Any) -> Tuple[asyncio.SubprocessTransport, XBoardProtocol]: """ Spawns and initializes an XBoard engine. :param command: Path of the engine executable, or a list including the path and arguments. :param setpgrp: Open the engine process in a new process group. This will stop signals (such as keyboard interrupts) from propagating from the parent process. Defaults to ``False``. :param popen_args: Additional arguments for `popen <https://docs.python.org/3/library/subprocess.html#popen-constructor>`_. Do not set ``stdin``, ``stdout``, ``bufsize`` or ``universal_newlines``. Returns a subprocess transport and engine protocol pair. """ transport, protocol = await XBoardProtocol.popen(command, setpgrp=setpgrp, **popen_args) try: await protocol.initialize() except: transport.close() raise return transport, protocol
async def _async(sync: Callable[[], T]) -> T: return sync()
[docs]class SimpleEngine: """ Synchronous wrapper around a transport and engine protocol pair. Provides the same methods and attributes as :class:`chess.engine.Protocol` with blocking functions instead of coroutines. You may not concurrently modify objects passed to any of the methods. Other than that, :class:`~chess.engine.SimpleEngine` is thread-safe. When sending a new command to the engine, any previous running command will be cancelled as soon as possible. Methods will raise :class:`asyncio.TimeoutError` if an operation takes *timeout* seconds longer than expected (unless *timeout* is ``None``). Automatically closes the transport when used as a context manager. """ def __init__(self, transport: asyncio.SubprocessTransport, protocol: Protocol, *, timeout: Optional[float] = 10.0) -> None: self.transport = transport self.protocol = protocol self.timeout = timeout self._shutdown_lock = threading.Lock() self._shutdown = False self.shutdown_event = asyncio.Event() self.returncode: concurrent.futures.Future[int] = concurrent.futures.Future() def _timeout_for(self, limit: Optional[Limit]) -> Optional[float]: if self.timeout is None or limit is None or limit.time is None: return None return self.timeout + limit.time @contextlib.contextmanager def _not_shut_down(self) -> Generator[None, None, None]: with self._shutdown_lock: if self._shutdown: raise EngineTerminatedError("engine event loop dead") yield @property def options(self) -> MutableMapping[str, Option]: with self._not_shut_down(): coro = _async(lambda: copy.copy(self.protocol.options)) future = asyncio.run_coroutine_threadsafe(coro, self.protocol.loop) return future.result() @property def id(self) -> Mapping[str, str]: with self._not_shut_down(): coro = _async(lambda: self.protocol.id.copy()) future = asyncio.run_coroutine_threadsafe(coro, self.protocol.loop) return future.result() def communicate(self, command_factory: Callable[[Protocol], BaseCommand[Protocol, T]]) -> T: with self._not_shut_down(): coro = self.protocol.communicate(command_factory) future = asyncio.run_coroutine_threadsafe(coro, self.protocol.loop) return future.result() def configure(self, options: ConfigMapping) -> None: with self._not_shut_down(): coro = asyncio.wait_for(self.protocol.configure(options), self.timeout) future = asyncio.run_coroutine_threadsafe(coro, self.protocol.loop) return future.result() def send_opponent_information(self, *, opponent: Optional[Opponent] = None, engine_rating: Optional[int] = None) -> None: with self._not_shut_down(): coro = asyncio.wait_for( self.protocol.send_opponent_information(opponent=opponent, engine_rating=engine_rating), self.timeout) future = asyncio.run_coroutine_threadsafe(coro, self.protocol.loop) return future.result() def ping(self) -> None: with self._not_shut_down(): coro = asyncio.wait_for(self.protocol.ping(), self.timeout) future = asyncio.run_coroutine_threadsafe(coro, self.protocol.loop) return future.result() def play(self, board: chess.Board, limit: Limit, *, game: object = None, info: Info = INFO_NONE, ponder: bool = False, draw_offered: bool = False, root_moves: Optional[Iterable[chess.Move]] = None, options: ConfigMapping = {}, opponent: Optional[Opponent] = None) -> PlayResult: with self._not_shut_down(): coro = asyncio.wait_for( self.protocol.play(board, limit, game=game, info=info, ponder=ponder, draw_offered=draw_offered, root_moves=root_moves, options=options, opponent=opponent), self._timeout_for(limit)) future = asyncio.run_coroutine_threadsafe(coro, self.protocol.loop) return future.result() @typing.overload def analyse(self, board: chess.Board, limit: Limit, *, game: object = None, info: Info = INFO_ALL, root_moves: Optional[Iterable[chess.Move]] = None, options: ConfigMapping = {}) -> InfoDict: ... @typing.overload def analyse(self, board: chess.Board, limit: Limit, *, multipv: int, game: object = None, info: Info = INFO_ALL, root_moves: Optional[Iterable[chess.Move]] = None, options: ConfigMapping = {}) -> List[InfoDict]: ... @typing.overload def analyse(self, board: chess.Board, limit: Limit, *, multipv: Optional[int] = None, game: object = None, info: Info = INFO_ALL, root_moves: Optional[Iterable[chess.Move]] = None, options: ConfigMapping = {}) -> Union[InfoDict, List[InfoDict]]: ... def analyse(self, board: chess.Board, limit: Limit, *, multipv: Optional[int] = None, game: object = None, info: Info = INFO_ALL, root_moves: Optional[Iterable[chess.Move]] = None, options: ConfigMapping = {}) -> Union[InfoDict, List[InfoDict]]: with self._not_shut_down(): coro = asyncio.wait_for( self.protocol.analyse(board, limit, multipv=multipv, game=game, info=info, root_moves=root_moves, options=options), self._timeout_for(limit)) future = asyncio.run_coroutine_threadsafe(coro, self.protocol.loop) return future.result() def analysis(self, board: chess.Board, limit: Optional[Limit] = None, *, multipv: Optional[int] = None, game: object = None, info: Info = INFO_ALL, root_moves: Optional[Iterable[chess.Move]] = None, options: ConfigMapping = {}) -> SimpleAnalysisResult: with self._not_shut_down(): coro = asyncio.wait_for( self.protocol.analysis(board, limit, multipv=multipv, game=game, info=info, root_moves=root_moves, options=options), self.timeout) # Timeout until analysis is *started* future = asyncio.run_coroutine_threadsafe(coro, self.protocol.loop) return SimpleAnalysisResult(self, future.result()) def send_game_result(self, board: chess.Board, winner: Optional[Color] = None, game_ending: Optional[str] = None, game_complete: bool = True) -> None: with self._not_shut_down(): coro = asyncio.wait_for(self.protocol.send_game_result(board, winner, game_ending, game_complete), self.timeout) future = asyncio.run_coroutine_threadsafe(coro, self.protocol.loop) return future.result() def quit(self) -> None: with self._not_shut_down(): coro = asyncio.wait_for(self.protocol.quit(), self.timeout) future = asyncio.run_coroutine_threadsafe(coro, self.protocol.loop) return future.result()
[docs] def close(self) -> None: """ Closes the transport and the background event loop as soon as possible. """ def _shutdown() -> None: self.transport.close() self.shutdown_event.set() with self._shutdown_lock: if not self._shutdown: self._shutdown = True self.protocol.loop.call_soon_threadsafe(_shutdown)
@classmethod def popen(cls, Protocol: Type[Protocol], command: Union[str, List[str]], *, timeout: Optional[float] = 10.0, debug: Optional[bool] = None, setpgrp: bool = False, **popen_args: Any) -> SimpleEngine: async def background(future: concurrent.futures.Future[SimpleEngine]) -> None: transport, protocol = await Protocol.popen(command, setpgrp=setpgrp, **popen_args) threading.current_thread().name = f"{cls.__name__} (pid={transport.get_pid()})" simple_engine = cls(transport, protocol, timeout=timeout) try: await asyncio.wait_for(protocol.initialize(), timeout) future.set_result(simple_engine) returncode = await protocol.returncode simple_engine.returncode.set_result(returncode) finally: simple_engine.close() await simple_engine.shutdown_event.wait() return run_in_background(background, name=f"{cls.__name__} (command={command!r})", debug=debug)
[docs] @classmethod def popen_uci(cls, command: Union[str, List[str]], *, timeout: Optional[float] = 10.0, debug: Optional[bool] = None, setpgrp: bool = False, **popen_args: Any) -> SimpleEngine: """ Spawns and initializes a UCI engine. Returns a :class:`~chess.engine.SimpleEngine` instance. """ return cls.popen(UciProtocol, command, timeout=timeout, debug=debug, setpgrp=setpgrp, **popen_args)
[docs] @classmethod def popen_xboard(cls, command: Union[str, List[str]], *, timeout: Optional[float] = 10.0, debug: Optional[bool] = None, setpgrp: bool = False, **popen_args: Any) -> SimpleEngine: """ Spawns and initializes an XBoard engine. Returns a :class:`~chess.engine.SimpleEngine` instance. """ return cls.popen(XBoardProtocol, command, timeout=timeout, debug=debug, setpgrp=setpgrp, **popen_args)
def __enter__(self) -> SimpleEngine: return self def __exit__(self, exc_type: Optional[Type[BaseException]], exc_value: Optional[BaseException], traceback: Optional[TracebackType]) -> None: self.close() def __repr__(self) -> str: pid = self.transport.get_pid() # This happens to be thread-safe return f"<{type(self).__name__} (pid={pid})>"
[docs]class SimpleAnalysisResult: """ Synchronous wrapper around :class:`~chess.engine.AnalysisResult`. Returned by :func:`chess.engine.SimpleEngine.analysis()`. """ def __init__(self, simple_engine: SimpleEngine, inner: AnalysisResult) -> None: self.simple_engine = simple_engine self.inner = inner @property def info(self) -> InfoDict: with self.simple_engine._not_shut_down(): coro = _async(lambda: self.inner.info.copy()) future = asyncio.run_coroutine_threadsafe(coro, self.simple_engine.protocol.loop) return future.result() @property def multipv(self) -> List[InfoDict]: with self.simple_engine._not_shut_down(): coro = _async(lambda: [info.copy() for info in self.inner.multipv]) future = asyncio.run_coroutine_threadsafe(coro, self.simple_engine.protocol.loop) return future.result() def stop(self) -> None: with self.simple_engine._not_shut_down(): self.simple_engine.protocol.loop.call_soon_threadsafe(self.inner.stop) def wait(self) -> BestMove: with self.simple_engine._not_shut_down(): future = asyncio.run_coroutine_threadsafe(self.inner.wait(), self.simple_engine.protocol.loop) return future.result() def would_block(self) -> bool: with self.simple_engine._not_shut_down(): future = asyncio.run_coroutine_threadsafe(_async(self.inner.would_block), self.simple_engine.protocol.loop) return future.result() def empty(self) -> bool: with self.simple_engine._not_shut_down(): future = asyncio.run_coroutine_threadsafe(_async(self.inner.empty), self.simple_engine.protocol.loop) return future.result() def get(self) -> InfoDict: with self.simple_engine._not_shut_down(): future = asyncio.run_coroutine_threadsafe(self.inner.get(), self.simple_engine.protocol.loop) return future.result() def next(self) -> Optional[InfoDict]: with self.simple_engine._not_shut_down(): future = asyncio.run_coroutine_threadsafe(self.inner.next(), self.simple_engine.protocol.loop) return future.result() def __iter__(self) -> Iterator[InfoDict]: with self.simple_engine._not_shut_down(): self.simple_engine.protocol.loop.call_soon_threadsafe(self.inner.__aiter__) return self def __next__(self) -> InfoDict: try: with self.simple_engine._not_shut_down(): future = asyncio.run_coroutine_threadsafe(self.inner.__anext__(), self.simple_engine.protocol.loop) return future.result() except StopAsyncIteration: raise StopIteration def __enter__(self) -> SimpleAnalysisResult: return self def __exit__(self, exc_type: Optional[Type[BaseException]], exc_value: Optional[BaseException], traceback: Optional[TracebackType]) -> None: self.stop()