
python-chess
Release 1.9.0

unknown

Mar 18, 2022

CONTENTS

1 Introduction 3

2 Installing 5

3 Documentation 7

4 Features 9

5 Selected projects 13

6 Acknowledgements 15

7 License 17

8 Contents 19
8.1 Core . 19
8.2 PGN parsing and writing . 36
8.3 Polyglot opening book reading . 44
8.4 Gaviota endgame tablebase probing . 45
8.5 Syzygy endgame tablebase probing . 47
8.6 UCI/XBoard engine communication . 49
8.7 SVG rendering . 62
8.8 Variants . 63
8.9 Changelog for python-chess . 66

9 Indices and tables 71

Index 73

i

ii

python-chess, Release 1.9.0

CONTENTS 1

https://github.com/niklasf/python-chess/actions
https://pypi.python.org/pypi/chess
https://python-chess.readthedocs.io/en/latest/
https://gitter.im/python-chess/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge

python-chess, Release 1.9.0

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

python-chess is a chess library for Python, with move generation, move validation, and support for common formats.
This is the Scholar’s mate in python-chess:

>>> import chess

>>> board = chess.Board()

>>> board.legal_moves
<LegalMoveGenerator at ... (Nh3, Nf3, Nc3, Na3, h3, g3, f3, e3, d3, c3, ...)>
>>> chess.Move.from_uci("a8a1") in board.legal_moves
False

>>> board.push_san("e4")
Move.from_uci('e2e4')
>>> board.push_san("e5")
Move.from_uci('e7e5')
>>> board.push_san("Qh5")
Move.from_uci('d1h5')
>>> board.push_san("Nc6")
Move.from_uci('b8c6')
>>> board.push_san("Bc4")
Move.from_uci('f1c4')
>>> board.push_san("Nf6")
Move.from_uci('g8f6')
>>> board.push_san("Qxf7")
Move.from_uci('h5f7')

>>> board.is_checkmate()
True

>>> board
Board('r1bqkb1r/pppp1Qpp/2n2n2/4p3/2B1P3/8/PPPP1PPP/RNB1K1NR b KQkq - 0 4')

3

python-chess, Release 1.9.0

4 Chapter 1. Introduction

CHAPTER

TWO

INSTALLING

Download and install the latest release:

pip install chess

5

python-chess, Release 1.9.0

6 Chapter 2. Installing

CHAPTER

THREE

DOCUMENTATION

• Core

• PGN parsing and writing

• Polyglot opening book reading

• Gaviota endgame tablebase probing

• Syzygy endgame tablebase probing

• UCI/XBoard engine communication

• Variants

• Changelog

7

https://python-chess.readthedocs.io/en/latest/core.html
https://python-chess.readthedocs.io/en/latest/pgn.html
https://python-chess.readthedocs.io/en/latest/polyglot.html
https://python-chess.readthedocs.io/en/latest/gaviota.html
https://python-chess.readthedocs.io/en/latest/syzygy.html
https://python-chess.readthedocs.io/en/latest/engine.html
https://python-chess.readthedocs.io/en/latest/variant.html
https://python-chess.readthedocs.io/en/latest/changelog.html

python-chess, Release 1.9.0

8 Chapter 3. Documentation

CHAPTER

FOUR

FEATURES

• Supports Python 3.7+. Includes mypy typings.

• IPython/Jupyter Notebook integration. SVG rendering docs.

>>> board

• Chess variants: Standard, Chess960, Suicide, Giveaway, Atomic, King of the Hill, Racing Kings, Horde, Three-
check, Crazyhouse. Variant docs.

• Make and unmake moves.

9

https://python-chess.readthedocs.io/en/latest/svg.html
https://python-chess.readthedocs.io/en/latest/variant.html

python-chess, Release 1.9.0

>>> Nf3 = chess.Move.from_uci("g1f3")
>>> board.push(Nf3) # Make the move

>>> board.pop() # Unmake the last move
Move.from_uci('g1f3')

• Show a simple ASCII board.

>>> board = chess.Board("r1bqkb1r/pppp1Qpp/2n2n2/4p3/2B1P3/8/PPPP1PPP/RNB1K1NR b
→˓KQkq - 0 4")
>>> print(board)
r . b q k b . r
p p p p . Q p p
. . n . . n . .
. . . . p . . .
. . B . P . . .
.
P P P P . P P P
R N B . K . N R

• Detects checkmates, stalemates and draws by insufficient material.

>>> board.is_stalemate()
False
>>> board.is_insufficient_material()
False
>>> board.outcome()
Outcome(termination=<Termination.CHECKMATE: 1>, winner=True)

• Detects repetitions. Has a half-move clock.

>>> board.can_claim_threefold_repetition()
False
>>> board.halfmove_clock
0
>>> board.can_claim_fifty_moves()
False
>>> board.can_claim_draw()
False

With the new rules from July 2014, a game ends as a draw (even without a claim) once a fivefold repetition
occurs or if there are 75 moves without a pawn push or capture. Other ways of ending a game take precedence.

>>> board.is_fivefold_repetition()
False
>>> board.is_seventyfive_moves()
False

• Detects checks and attacks.

>>> board.is_check()
True
>>> board.is_attacked_by(chess.WHITE, chess.E8)
True

>>> attackers = board.attackers(chess.WHITE, chess.F3)
>>> attackers

(continues on next page)

10 Chapter 4. Features

python-chess, Release 1.9.0

(continued from previous page)

SquareSet(0x0000_0000_0000_4040)
>>> chess.G2 in attackers
True
>>> print(attackers)
.
.
.
.
.
.
. 1 .
. 1 .

• Parses and creates SAN representation of moves.

>>> board = chess.Board()
>>> board.san(chess.Move(chess.E2, chess.E4))
'e4'
>>> board.parse_san('Nf3')
Move.from_uci('g1f3')
>>> board.variation_san([chess.Move.from_uci(m) for m in ["e2e4", "e7e5", "g1f3
→˓"]])
'1. e4 e5 2. Nf3'

• Parses and creates FENs, extended FENs and Shredder FENs.

>>> board.fen()
'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1'
>>> board.shredder_fen()
'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w HAha - 0 1'
>>> board = chess.Board("8/8/8/2k5/4K3/8/8/8 w - - 4 45")
>>> board.piece_at(chess.C5)
Piece.from_symbol('k')

• Parses and creates EPDs.

>>> board = chess.Board()
>>> board.epd(bm=board.parse_uci("d2d4"))
'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - bm d4;'

>>> ops = board.set_epd("1k1r4/pp1b1R2/3q2pp/4p3/2B5/4Q3/PPP2B2/2K5 b - - bm Qd1+;
→˓ id \"BK.01\";")
>>> ops == {'bm': [chess.Move.from_uci('d6d1')], 'id': 'BK.01'}
True

• Detects absolute pins and their directions.

• Reads Polyglot opening books. Docs.

>>> import chess.polyglot

>>> book = chess.polyglot.open_reader("data/polyglot/performance.bin")

>>> board = chess.Board()
>>> main_entry = book.find(board)
>>> main_entry.move
Move.from_uci('e2e4')

(continues on next page)

11

https://python-chess.readthedocs.io/en/latest/core.html#chess.Board.pin
https://python-chess.readthedocs.io/en/latest/polyglot.html

python-chess, Release 1.9.0

(continued from previous page)

>>> main_entry.weight
1

>>> book.close()

• Reads and writes PGNs. Supports headers, comments, NAGs and a tree of variations. Docs.

>>> import chess.pgn

>>> with open("data/pgn/molinari-bordais-1979.pgn") as pgn:
... first_game = chess.pgn.read_game(pgn)

>>> first_game.headers["White"]
'Molinari'
>>> first_game.headers["Black"]
'Bordais'

>>> first_game.mainline()
<Mainline at ... (1. e4 c5 2. c4 Nc6 3. Ne2 Nf6 4. Nbc3 Nb4 5. g3 Nd3#)>

>>> first_game.headers["Result"]
'0-1'

• Probe Gaviota endgame tablebases (DTM, WDL). Docs.

• Probe Syzygy endgame tablebases (DTZ, WDL). Docs.

>>> import chess.syzygy

>>> tablebase = chess.syzygy.open_tablebase("data/syzygy/regular")

>>> # Black to move is losing in 53 half moves (distance to zero) in this
>>> # KNBvK endgame.
>>> board = chess.Board("8/2K5/4B3/3N4/8/8/4k3/8 b - - 0 1")
>>> tablebase.probe_dtz(board)
-53

>>> tablebase.close()

• Communicate with UCI/XBoard engines. Based on asyncio. Docs.

>>> import chess.engine

>>> engine = chess.engine.SimpleEngine.popen_uci("stockfish")

>>> board = chess.Board("1k1r4/pp1b1R2/3q2pp/4p3/2B5/4Q3/PPP2B2/2K5 b - - 0 1")
>>> limit = chess.engine.Limit(time=2.0)
>>> engine.play(board, limit)
<PlayResult at ... (move=d6d1, ponder=c1d1, info={...}, draw_offered=False,
→˓resigned=False)>

>>> engine.quit()

12 Chapter 4. Features

https://python-chess.readthedocs.io/en/latest/pgn.html
https://python-chess.readthedocs.io/en/latest/gaviota.html
https://python-chess.readthedocs.io/en/latest/syzygy.html
https://python-chess.readthedocs.io/en/latest/engine.html

CHAPTER

FIVE

SELECTED PROJECTS

If you like, share interesting things you are using python-chess for, for example:

https://syzygy-tables.info/
A website to probe Syzygy endgame tablebases

https://maiachess.com/
A human-like neural network chess engine

clente/chess
Oppinionated wrapper to use python-chess from the R programming language

https://crazyara.org/
Deep learning for Crazyhouse

http://johncheetham.com
A GUI to play against UCI chess engines

https://www.pettingzoo.ml
A multi-agent reinforcement learning environment

• a stand-alone chess computer based on DGT board – http://www.picochess.org/

• a bridge between Lichess API and chess engines – https://github.com/careless25/lichess-bot

• a command-line PGN annotator – https://github.com/rpdelaney/python-chess-annotator

• an HTTP microservice to render board images – https://github.com/niklasf/web-boardimage

13

https://syzygy-tables.info/
https://syzygy-tables.info/
https://maiachess.com/
https://maiachess.com/
https://github.com/clente/chess
https://github.com/clente/chess
https://crazyara.org/
https://crazyara.org/
http://johncheetham.com/projects/jcchess/
http://johncheetham.com/projects/jcchess/
https://www.pettingzoo.ml/classic/chess
https://www.pettingzoo.ml/classic/chess
http://www.picochess.org/
https://github.com/careless25/lichess-bot
https://github.com/rpdelaney/python-chess-annotator
https://github.com/niklasf/web-boardimage

python-chess, Release 1.9.0

• building a toy chess engine with alpha-beta pruning, piece-square tables, and move ordering – https://
healeycodes.com/building-my-own-chess-engine/

• a JIT compiled chess engine – https://github.com/SamRagusa/Batch-First

• teaching Cognitive Science – https://jupyter.brynmawr.edu

• an Alexa skill to play blindfold chess – https://github.com/laynr/blindfold-chess

• a chessboard widget for PySide2 – https://github.com/H-a-y-k/hichesslib

• Django Rest Framework API for multiplayer chess – https://github.com/WorkShoft/capablanca-api

14 Chapter 5. Selected projects

https://healeycodes.com/building-my-own-chess-engine/
https://healeycodes.com/building-my-own-chess-engine/
https://github.com/SamRagusa/Batch-First
https://jupyter.brynmawr.edu/services/public/dblank/CS371%20Cognitive%20Science/2016-Fall/Programming%20a%20Chess%20Player.ipynb
https://www.amazon.com/Laynr-blindfold-chess/dp/B0859QF8YL
https://github.com/laynr/blindfold-chess
https://github.com/H-a-y-k/hichesslib
https://github.com/WorkShoft/capablanca-api

CHAPTER

SIX

ACKNOWLEDGEMENTS

Thanks to the Stockfish authors and thanks to Sam Tannous for publishing his approach to avoid rotated bitboards with
direct lookup (PDF) alongside his GPL2+ engine Shatranj. Some move generation ideas are taken from these sources.

Thanks to Ronald de Man for his Syzygy endgame tablebases. The probing code in python-chess is very directly
ported from his C probing code.

Thanks to Kristian Glass for transferring the namespace chess on PyPI.

15

http://arxiv.org/pdf/0704.3773.pdf
http://arxiv.org/pdf/0704.3773.pdf
https://github.com/stannous/shatranj
https://github.com/syzygy1/tb
https://github.com/doismellburning

python-chess, Release 1.9.0

16 Chapter 6. Acknowledgements

CHAPTER

SEVEN

LICENSE

python-chess is licensed under the GPL 3 (or any later version at your option). Check out LICENSE.txt for the full
text.

17

python-chess, Release 1.9.0

18 Chapter 7. License

CHAPTER

EIGHT

CONTENTS

8.1 Core

8.1.1 Colors

Constants for the side to move or the color of a piece.

chess.WHITE: chess.Color = True

chess.BLACK: chess.Color = False

You can get the opposite color using not color.

8.1.2 Piece types

chess.PAWN: chess.PieceType = 1

chess.KNIGHT: chess.PieceType = 2

chess.BISHOP: chess.PieceType = 3

chess.ROOK: chess.PieceType = 4

chess.QUEEN: chess.PieceType = 5

chess.KING: chess.PieceType = 6

chess.piece_symbol(piece_type: chess.PieceType)→ str

chess.piece_name(piece_type: chess.PieceType)→ str

8.1.3 Squares

chess.A1: chess.Square = 0

chess.B1: chess.Square = 1

and so on to

chess.G8: chess.Square = 62

chess.H8: chess.Square = 63

chess.SQUARES = [chess.A1, chess.B1, ..., chess.G8, chess.H8]

chess.SQUARE_NAMES = ['a1', 'b1', ..., 'g8', 'h8']

chess.FILE_NAMES = ['a', 'b', ..., 'g', 'h']

19

python-chess, Release 1.9.0

chess.RANK_NAMES = ['1', '2', ..., '7', '8']

chess.parse_square(name: str)→ chess.Square
Gets the square index for the given square name (e.g., a1 returns 0).

Raises ValueError if the square name is invalid.

chess.square_name(square: chess.Square)→ str
Gets the name of the square, like a3.

chess.square(file_index: int, rank_index: int)→ chess.Square
Gets a square number by file and rank index.

chess.square_file(square: chess.Square)→ int
Gets the file index of the square where 0 is the a-file.

chess.square_rank(square: chess.Square)→ int
Gets the rank index of the square where 0 is the first rank.

chess.square_distance(a: chess.Square, b: chess.Square)→ int
Gets the distance (i.e., the number of king steps) from square a to b.

chess.square_mirror(square: chess.Square)→ chess.Square
Mirrors the square vertically.

8.1.4 Pieces

class chess.Piece(piece_type: chess.PieceType, color: chess.Color)
A piece with type and color.

piece_type: chess.PieceType
The piece type.

color: chess.Color
The piece color.

symbol()→ str
Gets the symbol P, N, B, R, Q or K for white pieces or the lower-case variants for the black pieces.

unicode_symbol(*, invert_color: bool = False)→ str
Gets the Unicode character for the piece.

classmethod from_symbol(symbol: str)→ chess.Piece
Creates a Piece instance from a piece symbol.

Raises ValueError if the symbol is invalid.

8.1.5 Moves

class chess.Move(from_square: chess.Square, to_square: chess.Square, promotion: Op-
tional[chess.PieceType] = None, drop: Optional[chess.PieceType] = None)

Represents a move from a square to a square and possibly the promotion piece type.

Drops and null moves are supported.

from_square: chess.Square
The source square.

to_square: chess.Square
The target square.

20 Chapter 8. Contents

python-chess, Release 1.9.0

promotion: Optional[chess.PieceType] = None
The promotion piece type or None.

drop: Optional[chess.PieceType] = None
The drop piece type or None.

uci()→ str
Gets a UCI string for the move.

For example, a move from a7 to a8 would be a7a8 or a7a8q (if the latter is a promotion to a queen).

The UCI representation of a null move is 0000.

classmethod from_uci(uci: str)→ chess.Move
Parses a UCI string.

Raises ValueError if the UCI string is invalid.

classmethod null()→ chess.Move
Gets a null move.

A null move just passes the turn to the other side (and possibly forfeits en passant capturing). Null moves
evaluate to False in boolean contexts.

>>> import chess
>>>
>>> bool(chess.Move.null())
False

8.1.6 Board

chess.STARTING_FEN = 'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1'
The FEN for the standard chess starting position.

chess.STARTING_BOARD_FEN = 'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR'
The board part of the FEN for the standard chess starting position.

class chess.Board(fen: Optional[str] = 'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq
- 0 1', *, chess960: bool = False)

A BaseBoard, additional information representing a chess position, and a move stack.

Provides move generation, validation, parsing, attack generation, game end detection, and the
capability to make and unmake moves.

The board is initialized to the standard chess starting position, unless otherwise specified in the optional fen
argument. If fen is None, an empty board is created.

Optionally supports chess960. In Chess960, castling moves are encoded by a king move to the corresponding
rook square. Use chess.Board.from_chess960_pos() to create a board with one of the Chess960
starting positions.

It’s safe to set turn, castling_rights, ep_square, halfmove_clock and fullmove_number
directly.

Warning: It is possible to set up and work with invalid positions. In this case, Board implements a kind
of “pseudo-chess” (useful to gracefully handle errors or to implement chess variants). Use is_valid()
to detect invalid positions.

8.1. Core 21

python-chess, Release 1.9.0

turn: chess.Color
The side to move (chess.WHITE or chess.BLACK).

castling_rights: chess.Bitboard
Bitmask of the rooks with castling rights.

To test for specific squares:

>>> import chess
>>>
>>> board = chess.Board()
>>> bool(board.castling_rights & chess.BB_H1) # White can castle with the h1
→˓rook
True

To add a specific square:

>>> board.castling_rights |= chess.BB_A1

Use set_castling_fen() to set multiple castling rights. Also see has_castling_rights(),
has_kingside_castling_rights(), has_queenside_castling_rights(),
has_chess960_castling_rights(), clean_castling_rights().

fullmove_number: int
Counts move pairs. Starts at 1 and is incremented after every move of the black side.

halfmove_clock: int
The number of half-moves since the last capture or pawn move.

promoted: chess.Bitboard
A bitmask of pieces that have been promoted.

chess960: bool
Whether the board is in Chess960 mode. In Chess960 castling moves are represented as king moves to the
corresponding rook square.

ep_square: Optional[chess.Square]
The potential en passant square on the third or sixth rank or None.

Use has_legal_en_passant() to test if en passant capturing would actually be possible on the next
move.

move_stack: List[chess.Move]
The move stack. Use Board.push(), Board.pop(), Board.peek() and Board.
clear_stack() for manipulation.

property legal_moves
A dynamic list of legal moves.

>>> import chess
>>>
>>> board = chess.Board()
>>> board.legal_moves.count()
20
>>> bool(board.legal_moves)
True
>>> move = chess.Move.from_uci("g1f3")
>>> move in board.legal_moves
True

Wraps generate_legal_moves() and is_legal().

22 Chapter 8. Contents

python-chess, Release 1.9.0

property pseudo_legal_moves
A dynamic list of pseudo-legal moves, much like the legal move list.

Pseudo-legal moves might leave or put the king in check, but are otherwise valid. Null moves are not
pseudo-legal. Castling moves are only included if they are completely legal.

Wraps generate_pseudo_legal_moves() and is_pseudo_legal().

reset()→ None
Restores the starting position.

reset_board()→ None
Resets only pieces to the starting position. Use reset() to fully restore the starting position (including
turn, castling rights, etc.).

clear()→ None
Clears the board.

Resets move stack and move counters. The side to move is white. There are no rooks or kings, so castling
rights are removed.

In order to be in a valid status(), at least kings need to be put on the board.

clear_board()→ None
Clears the board.

clear_stack()→ None
Clears the move stack.

root()→ BoardT
Returns a copy of the root position.

ply()→ int
Returns the number of half-moves since the start of the game, as indicated by fullmove_number and
turn.

If moves have been pushed from the beginning, this is usually equal to len(board.move_stack).
But note that a board can be set up with arbitrary starting positions, and the stack can be cleared.

remove_piece_at(square: chess.Square)→ Optional[chess.Piece]
Removes the piece from the given square. Returns the Piece or None if the square was already empty.

set_piece_at(square: chess.Square, piece: Optional[chess.Piece], promoted: bool = False) →
None

Sets a piece at the given square.

An existing piece is replaced. Setting piece to None is equivalent to remove_piece_at().

checkers()→ chess.SquareSet
Gets the pieces currently giving check.

Returns a set of squares.

is_check()→ bool
Tests if the current side to move is in check.

gives_check(move: chess.Move)→ bool
Probes if the given move would put the opponent in check. The move must be at least pseudo-legal.

is_variant_end()→ bool
Checks if the game is over due to a special variant end condition.

Note, for example, that stalemate is not considered a variant-specific end condition (this method will
return False), yet it can have a special result in suicide chess (any of is_variant_loss(),
is_variant_win(), is_variant_draw() might return True).

8.1. Core 23

python-chess, Release 1.9.0

is_variant_loss()→ bool
Checks if the current side to move lost due to a variant-specific condition.

is_variant_win()→ bool
Checks if the current side to move won due to a variant-specific condition.

is_variant_draw()→ bool
Checks if a variant-specific drawing condition is fulfilled.

outcome(*, claim_draw: bool = False)→ Optional[chess.Outcome]
Checks if the game is over due to checkmate, stalemate, insufficient material, the
seventyfive-move rule, fivefold repetition, or a variant end condition. Re-
turns the chess.Outcome if the game has ended, otherwise None.

Alternatively, use is_game_over() if you are not interested in who won the game and why.

The game is not considered to be over by the fifty-move rule or threefold repetition,
unless claim_draw is given. Note that checking the latter can be slow.

is_checkmate()→ bool
Checks if the current position is a checkmate.

is_stalemate()→ bool
Checks if the current position is a stalemate.

is_insufficient_material()→ bool
Checks if neither side has sufficient winning material (has_insufficient_material()).

has_insufficient_material(color: chess.Color)→ bool
Checks if color has insufficient winning material.

This is guaranteed to return False if color can still win the game.

The converse does not necessarily hold: The implementation only looks at the material, including the
colors of bishops, but not considering piece positions. So fortress positions or positions with forced lines
may return False, even though there is no possible winning line.

is_seventyfive_moves()→ bool
Since the 1st of July 2014, a game is automatically drawn (without a claim by one of the players) if the
half-move clock since a capture or pawn move is equal to or greater than 150. Other means to end a game
take precedence.

is_fivefold_repetition()→ bool
Since the 1st of July 2014 a game is automatically drawn (without a claim by one of the players) if a
position occurs for the fifth time. Originally this had to occur on consecutive alternating moves, but this
has since been revised.

can_claim_draw()→ bool
Checks if the player to move can claim a draw by the fifty-move rule or by threefold repetition.

Note that checking the latter can be slow.

is_fifty_moves()→ bool
Checks that the clock of halfmoves since the last capture or pawn move is greater or equal to 100, and that
no other means of ending the game (like checkmate) take precedence.

can_claim_fifty_moves()→ bool
Checks if the player to move can claim a draw by the fifty-move rule.

In addition to is_fifty_moves(), the fifty-move rule can also be claimed if there is a legal move that
achieves this condition.

24 Chapter 8. Contents

python-chess, Release 1.9.0

can_claim_threefold_repetition()→ bool
Checks if the player to move can claim a draw by threefold repetition.

Draw by threefold repetition can be claimed if the position on the board occurred for the third time or if
such a repetition is reached with one of the possible legal moves.

Note that checking this can be slow: In the worst case scenario, every legal move has to be tested and the
entire game has to be replayed because there is no incremental transposition table.

is_repetition(count: int = 3)→ bool
Checks if the current position has repeated 3 (or a given number of) times.

Unlike can_claim_threefold_repetition(), this does not consider a repetition that can be
played on the next move.

Note that checking this can be slow: In the worst case, the entire game has to be replayed because there is
no incremental transposition table.

push(move: chess.Move)→ None
Updates the position with the given move and puts it onto the move stack.

>>> import chess
>>>
>>> board = chess.Board()
>>>
>>> Nf3 = chess.Move.from_uci("g1f3")
>>> board.push(Nf3) # Make the move

>>> board.pop() # Unmake the last move
Move.from_uci('g1f3')

Null moves just increment the move counters, switch turns and forfeit en passant capturing.

Warning: Moves are not checked for legality. It is the caller’s responsibility to ensure that the move
is at least pseudo-legal or a null move.

pop()→ chess.Move
Restores the previous position and returns the last move from the stack.

Raises IndexError if the move stack is empty.

peek()→ chess.Move
Gets the last move from the move stack.

Raises IndexError if the move stack is empty.

find_move(from_square: chess.Square, to_square: chess.Square, promotion: Op-
tional[chess.PieceType] = None)→ chess.Move

Finds a matching legal move for an origin square, a target square, and an optional promotion piece type.

For pawn moves to the backrank, the promotion piece type defaults to chess.QUEEN , unless otherwise
specified.

Castling moves are normalized to king moves by two steps, except in Chess960.

Raises ValueError if no matching legal move is found.

has_pseudo_legal_en_passant()→ bool
Checks if there is a pseudo-legal en passant capture.

8.1. Core 25

python-chess, Release 1.9.0

has_legal_en_passant()→ bool
Checks if there is a legal en passant capture.

fen(*, shredder: bool = False, en_passant: Literal[legal, fen, xfen] = 'legal', promoted: Optional[bool]
= None)→ str
Gets a FEN representation of the position.

A FEN string (e.g., rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1)
consists of the board part board_fen(), the turn, the castling part (castling_rights), the en
passant square (ep_square), the halfmove_clock and the fullmove_number.

Parameters

• shredder – Use castling_shredder_fen() and encode castling rights by the
file of the rook (like HAha) instead of the default castling_xfen() (like KQkq).

• en_passant – By default, only fully legal en passant squares are included
(has_legal_en_passant()). Pass fen to strictly follow the FEN specification (al-
ways include the en passant square after a two-step pawn move) or xfen to follow the
X-FEN specification (has_pseudo_legal_en_passant()).

• promoted – Mark promoted pieces like Q~. By default, this is only enabled in chess
variants where this is relevant.

set_fen(fen: str)→ None
Parses a FEN and sets the position from it.

Raises ValueError if syntactically invalid. Use is_valid() to detect invalid positions.

set_castling_fen(castling_fen: str)→ None
Sets castling rights from a string in FEN notation like Qqk.

Raises ValueError if the castling FEN is syntactically invalid.

set_board_fen(fen: str)→ None
Parses fen and sets up the board, where fen is the board part of a FEN.

Raises ValueError if syntactically invalid.

set_piece_map(pieces: Mapping[chess.Square, chess.Piece])→ None
Sets up the board from a dictionary of pieces by square index.

set_chess960_pos(scharnagl: int)→ None
Sets up a Chess960 starting position given its index between 0 and 959. Also see
from_chess960_pos().

chess960_pos(*, ignore_turn: bool = False, ignore_castling: bool = False, ignore_counters: bool =
True)→ Optional[int]

Gets the Chess960 starting position index between 0 and 956, or None if the current position is not a
Chess960 starting position.

By default, white to move (ignore_turn) and full castling rights (ignore_castling) are required, but move
counters (ignore_counters) are ignored.

epd(*, shredder: bool = False, en_passant: Literal[legal, fen, xfen] = 'legal', promoted: Optional[bool]
= None, **operations: Union[None, str, int, float, chess.Move, Iterable[chess.Move]])→ str
Gets an EPD representation of the current position.

See fen() for FEN formatting options (shredder, ep_square and promoted).

EPD operations can be given as keyword arguments. Supported operands are strings, integers, finite floats,
legal moves and None. Additionally, the operation pv accepts a legal variation as a list of moves. The
operations am and bm accept a list of legal moves in the current position.

26 Chapter 8. Contents

python-chess, Release 1.9.0

The name of the field cannot be a lone dash and cannot contain spaces, newlines, carriage returns or tabs.

hmvc and fmvn are not included by default. You can use:

>>> import chess
>>>
>>> board = chess.Board()
>>> board.epd(hmvc=board.halfmove_clock, fmvn=board.fullmove_number)
'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - hmvc 0; fmvn 1;'

set_epd(epd: str)→ Dict[str, Union[None, str, int, float, chess.Move, List[chess.Move]]]
Parses the given EPD string and uses it to set the position.

If present, hmvc and fmvn are used to set the half-move clock and the full-move number. Otherwise, 0
and 1 are used.

Returns a dictionary of parsed operations. Values can be strings, integers, floats, move objects, or lists of
moves.

Raises ValueError if the EPD string is invalid.

san(move: chess.Move)→ str
Gets the standard algebraic notation of the given move in the context of the current position.

lan(move: chess.Move)→ str
Gets the long algebraic notation of the given move in the context of the current position.

variation_san(variation: Iterable[chess.Move])→ str
Given a sequence of moves, returns a string representing the sequence in standard algebraic notation (e.g.,
1. e4 e5 2. Nf3 Nc6 or 37...Bg6 38. fxg6).

The board will not be modified as a result of calling this.

Raises ValueError if any moves in the sequence are illegal.

parse_san(san: str)→ chess.Move
Uses the current position as the context to parse a move in standard algebraic notation and returns the
corresponding move object.

Ambiguous moves are rejected. Overspecified moves (including long algebraic notation) are accepted.

The returned move is guaranteed to be either legal or a null move.

Raises ValueError if the SAN is invalid, illegal or ambiguous.

push_san(san: str)→ chess.Move
Parses a move in standard algebraic notation, makes the move and puts it onto the move stack.

Returns the move.

Raises ValueError if neither legal nor a null move.

uci(move: chess.Move, *, chess960: Optional[bool] = None)→ str
Gets the UCI notation of the move.

chess960 defaults to the mode of the board. Pass True to force Chess960 mode.

parse_uci(uci: str)→ chess.Move
Parses the given move in UCI notation.

Supports both Chess960 and standard UCI notation.

The returned move is guaranteed to be either legal or a null move.

Raises ValueError if the move is invalid or illegal in the current position (but not a null
move).

8.1. Core 27

python-chess, Release 1.9.0

push_uci(uci: str)→ chess.Move
Parses a move in UCI notation and puts it on the move stack.

Returns the move.

Raises ValueError if the move is invalid or illegal in the current position (but not a null
move).

push_xboard(san: str)→ chess.Move
Parses a move in standard algebraic notation, makes the move and puts it onto the move stack.

Returns the move.

Raises ValueError if neither legal nor a null move.

is_en_passant(move: chess.Move)→ bool
Checks if the given pseudo-legal move is an en passant capture.

is_capture(move: chess.Move)→ bool
Checks if the given pseudo-legal move is a capture.

is_zeroing(move: chess.Move)→ bool
Checks if the given pseudo-legal move is a capture or pawn move.

is_irreversible(move: chess.Move)→ bool
Checks if the given pseudo-legal move is irreversible.

In standard chess, pawn moves, captures, moves that destroy castling rights and moves that cede en passant
are irreversible.

This method has false-negatives with forced lines. For example, a check that will force the king to lose
castling rights is not considered irreversible. Only the actual king move is.

is_castling(move: chess.Move)→ bool
Checks if the given pseudo-legal move is a castling move.

is_kingside_castling(move: chess.Move)→ bool
Checks if the given pseudo-legal move is a kingside castling move.

is_queenside_castling(move: chess.Move)→ bool
Checks if the given pseudo-legal move is a queenside castling move.

clean_castling_rights()→ chess.Bitboard
Returns valid castling rights filtered from castling_rights.

has_castling_rights(color: chess.Color)→ bool
Checks if the given side has castling rights.

has_kingside_castling_rights(color: chess.Color)→ bool
Checks if the given side has kingside (that is h-side in Chess960) castling rights.

has_queenside_castling_rights(color: chess.Color)→ bool
Checks if the given side has queenside (that is a-side in Chess960) castling rights.

has_chess960_castling_rights()→ bool
Checks if there are castling rights that are only possible in Chess960.

status()→ chess.Status
Gets a bitmask of possible problems with the position.

STATUS_VALID if all basic validity requirements are met. This does not imply that the position is actually
reachable with a series of legal moves from the starting position.

Otherwise, bitwise combinations of: STATUS_NO_WHITE_KING,
STATUS_NO_BLACK_KING, STATUS_TOO_MANY_KINGS, STATUS_TOO_MANY_WHITE_PAWNS,

28 Chapter 8. Contents

python-chess, Release 1.9.0

STATUS_TOO_MANY_BLACK_PAWNS, STATUS_PAWNS_ON_BACKRANK,
STATUS_TOO_MANY_WHITE_PIECES, STATUS_TOO_MANY_BLACK_PIECES,
STATUS_BAD_CASTLING_RIGHTS, STATUS_INVALID_EP_SQUARE,
STATUS_OPPOSITE_CHECK, STATUS_EMPTY, STATUS_RACE_CHECK, STATUS_RACE_OVER,
STATUS_RACE_MATERIAL, STATUS_TOO_MANY_CHECKERS, STATUS_IMPOSSIBLE_CHECK.

is_valid()→ bool
Checks some basic validity requirements.

See status() for details.

transform(f: Callable[[chess.Bitboard], chess.Bitboard])→ BoardT
Returns a transformed copy of the board by applying a bitboard transformation function.

Available transformations include chess.flip_vertical(), chess.flip_horizontal(),
chess.flip_diagonal(), chess.flip_anti_diagonal(), chess.shift_down(),
chess.shift_up(), chess.shift_left(), and chess.shift_right().

Alternatively, apply_transform() can be used to apply the transformation on the board.

mirror()→ BoardT
Returns a mirrored copy of the board.

The board is mirrored vertically and piece colors are swapped, so that the position is equivalent modulo
color. Also swap the “en passant” square, castling rights and turn.

Alternatively, apply_mirror() can be used to mirror the board.

copy(*, stack: Union[bool, int] = True)→ BoardT
Creates a copy of the board.

Defaults to copying the entire move stack. Alternatively, stack can be False, or an integer to copy a
limited number of moves.

classmethod empty(*, chess960: bool = False)→ BoardT
Creates a new empty board. Also see clear().

classmethod from_epd(epd: str, *, chess960: bool = False) → Tuple[BoardT, Dict[str,
Union[None, str, int, float, chess.Move, List[chess.Move]]]]

Creates a new board from an EPD string. See set_epd().

Returns the board and the dictionary of parsed operations as a tuple.

classmethod from_chess960_pos(scharnagl: int)→ BoardT
Creates a new board, initialized with a Chess960 starting position.

>>> import chess
>>> import random
>>>
>>> board = chess.Board.from_chess960_pos(random.randint(0, 959))

class chess.BaseBoard(board_fen: Optional[str] = 'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR')
A board representing the position of chess pieces. See Board for a full board with move generation.

The board is initialized with the standard chess starting position, unless otherwise specified in the optional
board_fen argument. If board_fen is None, an empty board is created.

reset_board()→ None
Resets pieces to the starting position.

clear_board()→ None
Clears the board.

8.1. Core 29

python-chess, Release 1.9.0

pieces(piece_type: chess.PieceType, color: chess.Color)→ chess.SquareSet
Gets pieces of the given type and color.

Returns a set of squares.

piece_at(square: chess.Square)→ Optional[chess.Piece]
Gets the piece at the given square.

piece_type_at(square: chess.Square)→ Optional[chess.PieceType]
Gets the piece type at the given square.

color_at(square: chess.Square)→ Optional[chess.Color]
Gets the color of the piece at the given square.

king(color: chess.Color)→ Optional[chess.Square]
Finds the king square of the given side. Returns None if there is no king of that color.

In variants with king promotions, only non-promoted kings are considered.

attacks(square: chess.Square)→ chess.SquareSet
Gets the set of attacked squares from the given square.

There will be no attacks if the square is empty. Pinned pieces are still attacking other squares.

Returns a set of squares.

is_attacked_by(color: chess.Color, square: chess.Square)→ bool
Checks if the given side attacks the given square.

Pinned pieces still count as attackers. Pawns that can be captured en passant are not considered attacked.

attackers(color: chess.Color, square: chess.Square)→ chess.SquareSet
Gets the set of attackers of the given color for the given square.

Pinned pieces still count as attackers.

Returns a set of squares.

pin(color: chess.Color, square: chess.Square)→ chess.SquareSet
Detects an absolute pin (and its direction) of the given square to the king of the given color.

>>> import chess
>>>
>>> board = chess.Board("rnb1k2r/ppp2ppp/5n2/3q4/1b1P4/2N5/PP3PPP/R1BQKBNR w
→˓KQkq - 3 7")
>>> board.is_pinned(chess.WHITE, chess.C3)
True
>>> direction = board.pin(chess.WHITE, chess.C3)
>>> direction
SquareSet(0x0000_0001_0204_0810)
>>> print(direction)
.
.
.
1
. 1
. . 1
. . . 1
. . . . 1 . . .

Returns a set of squares that mask the rank, file or diagonal of the pin. If there is no pin, then a
mask of the entire board is returned.

30 Chapter 8. Contents

python-chess, Release 1.9.0

is_pinned(color: chess.Color, square: chess.Square)→ bool
Detects if the given square is pinned to the king of the given color.

remove_piece_at(square: chess.Square)→ Optional[chess.Piece]
Removes the piece from the given square. Returns the Piece or None if the square was already empty.

set_piece_at(square: chess.Square, piece: Optional[chess.Piece], promoted: bool = False) →
None

Sets a piece at the given square.

An existing piece is replaced. Setting piece to None is equivalent to remove_piece_at().

board_fen(*, promoted: Optional[bool] = False)→ str
Gets the board FEN (e.g., rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR).

set_board_fen(fen: str)→ None
Parses fen and sets up the board, where fen is the board part of a FEN.

Raises ValueError if syntactically invalid.

piece_map(*, mask: chess.Bitboard = 18446744073709551615)→ Dict[chess.Square, chess.Piece]
Gets a dictionary of pieces by square index.

set_piece_map(pieces: Mapping[chess.Square, chess.Piece])→ None
Sets up the board from a dictionary of pieces by square index.

set_chess960_pos(scharnagl: int)→ None
Sets up a Chess960 starting position given its index between 0 and 959. Also see
from_chess960_pos().

chess960_pos()→ Optional[int]
Gets the Chess960 starting position index between 0 and 959, or None.

unicode(*, invert_color: bool = False, borders: bool = False, empty_square: str = '')→ str
Returns a string representation of the board with Unicode pieces. Useful for pretty-printing to a terminal.

Parameters

• invert_color – Invert color of the Unicode pieces.

• borders – Show borders and a coordinate margin.

transform(f: Callable[[chess.Bitboard], chess.Bitboard])→ BaseBoardT
Returns a transformed copy of the board by applying a bitboard transformation function.

Available transformations include chess.flip_vertical(), chess.flip_horizontal(),
chess.flip_diagonal(), chess.flip_anti_diagonal(), chess.shift_down(),
chess.shift_up(), chess.shift_left(), and chess.shift_right().

Alternatively, apply_transform() can be used to apply the transformation on the board.

mirror()→ BaseBoardT
Returns a mirrored copy of the board.

The board is mirrored vertically and piece colors are swapped, so that the position is equivalent modulo
color.

Alternatively, apply_mirror() can be used to mirror the board.

copy()→ BaseBoardT
Creates a copy of the board.

classmethod empty()→ BaseBoardT
Creates a new empty board. Also see clear_board().

8.1. Core 31

python-chess, Release 1.9.0

classmethod from_chess960_pos(scharnagl: int)→ BaseBoardT
Creates a new board, initialized with a Chess960 starting position.

>>> import chess
>>> import random
>>>
>>> board = chess.Board.from_chess960_pos(random.randint(0, 959))

8.1.7 Outcome

class chess.Outcome(termination: chess.Termination, winner: Optional[chess.Color])
Information about the outcome of an ended game, usually obtained from chess.Board.outcome().

termination: chess.Termination
The reason for the game to have ended.

winner: Optional[chess.Color]
The winning color or None if drawn.

result()→ str
Returns 1-0, 0-1 or 1/2-1/2.

class chess.Termination(value)
Enum with reasons for a game to be over.

CHECKMATE = 1
See chess.Board.is_checkmate().

STALEMATE = 2
See chess.Board.is_stalemate().

INSUFFICIENT_MATERIAL = 3
See chess.Board.is_insufficient_material().

SEVENTYFIVE_MOVES = 4
See chess.Board.is_seventyfive_moves().

FIVEFOLD_REPETITION = 5
See chess.Board.is_fivefold_repetition().

FIFTY_MOVES = 6
See chess.Board.can_claim_fifty_moves().

THREEFOLD_REPETITION = 7
See chess.Board.can_claim_threefold_repetition().

VARIANT_WIN = 8
See chess.Board.is_variant_win().

VARIANT_LOSS = 9
See chess.Board.is_variant_loss().

VARIANT_DRAW = 10
See chess.Board.is_variant_draw().

32 Chapter 8. Contents

python-chess, Release 1.9.0

8.1.8 Square sets

class chess.SquareSet(squares: chess.IntoSquareSet = 0)
A set of squares.

>>> import chess
>>>
>>> squares = chess.SquareSet([chess.A8, chess.A1])
>>> squares
SquareSet(0x0100_0000_0000_0001)

>>> squares = chess.SquareSet(chess.BB_A8 | chess.BB_RANK_1)
>>> squares
SquareSet(0x0100_0000_0000_00ff)

>>> print(squares)
1
.
.
.
.
.
.
1 1 1 1 1 1 1 1

>>> len(squares)
9

>>> bool(squares)
True

>>> chess.B1 in squares
True

>>> for square in squares:
... # 0 -- chess.A1
... # 1 -- chess.B1
... # 2 -- chess.C1
... # 3 -- chess.D1
... # 4 -- chess.E1
... # 5 -- chess.F1
... # 6 -- chess.G1
... # 7 -- chess.H1
... # 56 -- chess.A8
... print(square)
...
0
1
2
3
4
5
6
7
56

8.1. Core 33

python-chess, Release 1.9.0

>>> list(squares)
[0, 1, 2, 3, 4, 5, 6, 7, 56]

Square sets are internally represented by 64-bit integer masks of the included squares. Bitwise operations can
be used to compute unions, intersections and shifts.

>>> int(squares)
72057594037928191

Also supports common set operations like issubset(), issuperset(), union(),
intersection(), difference(), symmetric_difference() and copy() as well as update(),
intersection_update(), difference_update(), symmetric_difference_update() and
clear().

add(square: chess.Square)→ None
Adds a square to the set.

discard(square: chess.Square)→ None
Discards a square from the set.

isdisjoint(other: chess.IntoSquareSet)→ bool
Tests if the square sets are disjoint.

issubset(other: chess.IntoSquareSet)→ bool
Tests if this square set is a subset of another.

issuperset(other: chess.IntoSquareSet)→ bool
Tests if this square set is a superset of another.

remove(square: chess.Square)→ None
Removes a square from the set.

Raises KeyError if the given square was not in the set.

pop()→ chess.Square
Removes and returns a square from the set.

Raises KeyError if the set is empty.

clear()→ None
Removes all elements from this set.

carry_rippler()→ Iterator[chess.Bitboard]
Iterator over the subsets of this set.

mirror()→ chess.SquareSet
Returns a vertically mirrored copy of this square set.

tolist()→ List[bool]
Converts the set to a list of 64 bools.

classmethod ray(a: chess.Square, b: chess.Square)→ chess.SquareSet
All squares on the rank, file or diagonal with the two squares, if they are aligned.

>>> import chess
>>>
>>> print(chess.SquareSet.ray(chess.E2, chess.B5))
.
.
1
. 1

(continues on next page)

34 Chapter 8. Contents

python-chess, Release 1.9.0

(continued from previous page)

. . 1

. . . 1

. . . . 1 . . .

. 1 . .

classmethod between(a: chess.Square, b: chess.Square)→ chess.SquareSet
All squares on the rank, file or diagonal between the two squares (bounds not included), if they are aligned.

>>> import chess
>>>
>>> print(chess.SquareSet.between(chess.E2, chess.B5))
.
.
.
.
. . 1
. . . 1
.
.

classmethod from_square(square: chess.Square)→ chess.SquareSet
Creates a SquareSet from a single square.

>>> import chess
>>>
>>> chess.SquareSet.from_square(chess.A1) == chess.BB_A1
True

Common integer masks are:

chess.BB_EMPTY: chess.Bitboard = 0

chess.BB_ALL: chess.Bitboard = 0xFFFF_FFFF_FFFF_FFFF

Single squares:

chess.BB_SQUARES = [chess.BB_A1, chess.BB_B1, ..., chess.BB_G8, chess.BB_H8]

Ranks and files:

chess.BB_RANKS = [chess.BB_RANK_1, ..., chess.BB_RANK_8]

chess.BB_FILES = [chess.BB_FILE_A, ..., chess.BB_FILE_H]

Other masks:

chess.BB_LIGHT_SQUARES: chess.Bitboard = 0x55AA_55AA_55AA_55AA

chess.BB_DARK_SQUARES: chess.Bitboard = 0xAA55_AA55_AA55_AA55

chess.BB_BACKRANKS = chess.BB_RANK_1 | chess.BB_RANK_8

chess.BB_CORNERS = chess.BB_A1 | chess.BB_H1 | chess.BB_A8 | chess.BB_H8

chess.BB_CENTER = chess.BB_D4 | chess.BB_E4 | chess.BB_D5 | chess.BB_E5

8.1. Core 35

python-chess, Release 1.9.0

8.2 PGN parsing and writing

8.2.1 Parsing

chess.pgn.read_game(handle: TextIO)→ Optional[chess.pgn.Game]
chess.pgn.read_game(handle: TextIO, *, Visitor: Callable[], chess.pgn.BaseVisitor[ResultT]])→ Op-

tional[ResultT]
Reads a game from a file opened in text mode.

>>> import chess.pgn
>>>
>>> pgn = open("data/pgn/kasparov-deep-blue-1997.pgn")
>>>
>>> first_game = chess.pgn.read_game(pgn)
>>> second_game = chess.pgn.read_game(pgn)
>>>
>>> first_game.headers["Event"]
'IBM Man-Machine, New York USA'
>>>
>>> # Iterate through all moves and play them on a board.
>>> board = first_game.board()
>>> for move in first_game.mainline_moves():
... board.push(move)
...
>>> board
Board('4r3/6P1/2p2P1k/1p6/pP2p1R1/P1B5/2P2K2/3r4 b - - 0 45')

By using text mode, the parser does not need to handle encodings. It is the caller’s responsibility to open the file
with the correct encoding. PGN files are usually ASCII or UTF-8 encoded, sometimes with BOM (which this
parser automatically ignores).

>>> pgn = open("data/pgn/kasparov-deep-blue-1997.pgn", encoding="utf-8")

Use StringIO to parse games from a string.

>>> import io
>>>
>>> pgn = io.StringIO("1. e4 e5 2. Nf3 *")
>>> game = chess.pgn.read_game(pgn)

The end of a game is determined by a completely blank line or the end of the file. (Of course, blank lines in
comments are possible).

According to the PGN standard, at least the usual seven header tags are required for a valid game. This parser
also handles games without any headers just fine.

The parser is relatively forgiving when it comes to errors. It skips over tokens it can not parse. By default, any
exceptions are logged and collected in Game.errors. This behavior can be overridden.

Returns the parsed game or None if the end of file is reached.

36 Chapter 8. Contents

python-chess, Release 1.9.0

8.2.2 Writing

If you want to export your game with all headers, comments and variations, you can do it like this:

>>> import chess
>>> import chess.pgn
>>>
>>> game = chess.pgn.Game()
>>> game.headers["Event"] = "Example"
>>> node = game.add_variation(chess.Move.from_uci("e2e4"))
>>> node = node.add_variation(chess.Move.from_uci("e7e5"))
>>> node.comment = "Comment"
>>>
>>> print(game)
[Event "Example"]
[Site "?"]
[Date "????.??.??"]
[Round "?"]
[White "?"]
[Black "?"]
[Result "*"]

1. e4 e5 { Comment } *

Remember that games in files should be separated with extra blank lines.

>>> print(game, file=open("/dev/null", "w"), end="\n\n")

Use the StringExporter() or FileExporter() visitors if you need more control.

8.2.3 Game model

Games are represented as a tree of moves. Conceptually each node represents a position of the game. The tree consists
of one root node (Game, also holding game headers) and many child nodes (ChildNode). Both extend GameNode.

class chess.pgn.GameNode(*, comment: str = '')

parent: Optional[chess.pgn.GameNode]
The parent node or None if this is the root node of the game.

move: Optional[chess.Move]
The move leading to this node or None if this is the root node of the game.

variations: List[chess.pgn.ChildNode]
A list of child nodes.

comment: str
A comment that goes behind the move leading to this node. Comments that occur before any moves are
assigned to the root node.

abstract board()→ chess.Board
Gets a board with the position of the node.

For the root node, this is the default starting position (for the Variant) unless the FEN header tag is set.

It’s a copy, so modifying the board will not alter the game.

8.2. PGN parsing and writing 37

python-chess, Release 1.9.0

abstract ply()→ int
Returns the number of half-moves up to this node, as indicated by fullmove number and turn of the position.
See chess.Board.ply().

Usually this is equal to the number of parent nodes, but it may be more if the game was started from a
custom position.

turn()→ chess.Color
Gets the color to move at this node. See chess.Board.turn.

game()→ chess.pgn.Game
Gets the root node, i.e., the game.

end()→ chess.pgn.GameNode
Follows the main variation to the end and returns the last node.

is_end()→ bool
Checks if this node is the last node in the current variation.

starts_variation()→ bool
Checks if this node starts a variation (and can thus have a starting comment). The root node does not start
a variation and can have no starting comment.

For example, in 1. e4 e5 (1... c5 2. Nf3) 2. Nf3, the node holding 1. . . c5 starts a varia-
tion.

is_mainline()→ bool
Checks if the node is in the mainline of the game.

is_main_variation()→ bool
Checks if this node is the first variation from the point of view of its parent. The root node is also in the
main variation.

variation(move: Union[int, chess.Move, chess.pgn.GameNode])→ chess.pgn.ChildNode
Gets a child node by either the move or the variation index.

has_variation(move: Union[int, chess.Move, chess.pgn.GameNode])→ bool
Checks if this node has the given variation.

promote_to_main(move: Union[int, chess.Move, chess.pgn.GameNode])→ None
Promotes the given move to the main variation.

promote(move: Union[int, chess.Move, chess.pgn.GameNode])→ None
Moves a variation one up in the list of variations.

demote(move: Union[int, chess.Move, chess.pgn.GameNode])→ None
Moves a variation one down in the list of variations.

remove_variation(move: Union[int, chess.Move, chess.pgn.GameNode])→ None
Removes a variation.

add_variation(move: chess.Move, *, comment: str = '', starting_comment: str = '', nags: Iter-
able[int] = [])→ chess.pgn.ChildNode

Creates a child node with the given attributes.

add_main_variation(move: chess.Move, *, comment: str = '', nags: Iterable[int] = []) →
chess.pgn.ChildNode

Creates a child node with the given attributes and promotes it to the main variation.

next()→ Optional[chess.pgn.ChildNode]
Returns the first node of the mainline after this node, or None if this node does not have any children.

mainline()→ chess.pgn.Mainline[chess.pgn.ChildNode]
Returns an iterable over the mainline starting after this node.

38 Chapter 8. Contents

python-chess, Release 1.9.0

mainline_moves()→ chess.pgn.Mainline[chess.Move]
Returns an iterable over the main moves after this node.

add_line(moves: Iterable[chess.Move], *, comment: str = '', starting_comment: str = '', nags: Iter-
able[int] = [])→ chess.pgn.GameNode

Creates a sequence of child nodes for the given list of moves. Adds comment and nags to the last node of
the line and returns it.

eval()→ Optional[chess.engine.PovScore]
Parses the first valid [%eval ...] annotation in the comment of this node, if any.

eval_depth()→ Optional[int]
Parses the first valid [%eval ...] annotation in the comment of this node and returns the corresponding
depth, if any.

set_eval(score: Optional[chess.engine.PovScore], depth: Optional[int] = None)→ None
Replaces the first valid [%eval ...] annotation in the comment of this node or adds a new one.

arrows()→ List[chess.svg.Arrow]
Parses all [%csl ...] and [%cal ...] annotations in the comment of this node.

Returns a list of arrows.

set_arrows(arrows: Iterable[Union[chess.svg.Arrow, Tuple[chess.Square, chess.Square]]]) →
None

Replaces all valid [%csl ...] and [%cal ...] annotations in the comment of this node or adds new
ones.

clock()→ Optional[float]
Parses the first valid [%clk ...] annotation in the comment of this node, if any.

Returns the player’s remaining time to the next time control after this move, in seconds.

set_clock(seconds: Optional[float])→ None
Replaces the first valid [%clk ...] annotation in the comment of this node or adds a new one.

emt()→ Optional[float]
Parses the first valid [%emt ...] annotation in the comment of this node, if any.

Returns the player’s elapsed move time use for the comment of this move, in seconds.

set_emt(seconds: Optional[float])→ None
Replaces the first valid [%emt ...] annotation in the comment of this node or adds a new one.

abstract accept(visitor: chess.pgn.BaseVisitor[ResultT])→ ResultT
Traverses game nodes in PGN order using the given visitor. Starts with the move leading to this node.
Returns the visitor result.

accept_subgame(visitor: chess.pgn.BaseVisitor[ResultT])→ ResultT
Traverses headers and game nodes in PGN order, as if the game was starting after this node. Returns the
visitor result.

class chess.pgn.Game(headers: Optional[Union[Mapping[str, str], Iterable[Tuple[str, str]]]] = None)
The root node of a game with extra information such as headers and the starting position. Extends GameNode.

headers: chess.pgn.Headers
A mapping of headers. By default, the following 7 headers are provided (Seven Tag Roster):

>>> import chess.pgn
>>>
>>> game = chess.pgn.Game()
>>> game.headers
Headers(Event='?', Site='?', Date='????.??.??', Round='?', White='?', Black='?
→˓', Result='*') (continues on next page)

8.2. PGN parsing and writing 39

python-chess, Release 1.9.0

(continued from previous page)

errors: List[Exception]
A list of errors (such as illegal or ambiguous moves) encountered while parsing the game.

setup(board: Union[chess.Board, str])→ None
Sets up a specific starting position. This sets (or resets) the FEN, SetUp, and Variant header tags.

accept(visitor: chess.pgn.BaseVisitor[ResultT])→ ResultT
Traverses the game in PGN order using the given visitor. Returns the visitor result.

classmethod from_board(board: chess.Board)→ GameT
Creates a game from the move stack of a Board().

classmethod without_tag_roster()→ GameT
Creates an empty game without the default Seven Tag Roster.

class chess.pgn.ChildNode(parent: chess.pgn.GameNode, move: chess.Move, *, comment: str = '',
starting_comment: str = '', nags: Iterable[int] = [])

A child node of a game, with the move leading to it. Extends GameNode.

nags: Set[int]
A set of NAGs as integers. NAGs always go behind a move, so the root node of the game will never have
NAGs.

parent: chess.pgn.GameNode
The parent node.

move: chess.Move
The move leading to this node.

starting_comment: str
A comment for the start of a variation. Only nodes that actually start a variation
(starts_variation() checks this) can have a starting comment. The root node can not have a
starting comment.

san()→ str
Gets the standard algebraic notation of the move leading to this node. See chess.Board.san().

Do not call this on the root node.

uci(*, chess960: Optional[bool] = None)→ str
Gets the UCI notation of the move leading to this node. See chess.Board.uci().

Do not call this on the root node.

end()→ chess.pgn.ChildNode
Follows the main variation to the end and returns the last node.

8.2.4 Visitors

Visitors are an advanced concept for game tree traversal.

class chess.pgn.BaseVisitor(*args, **kwds)
Base class for visitors.

Use with chess.pgn.Game.accept() or chess.pgn.GameNode.accept() or chess.pgn.
read_game().

The methods are called in PGN order.

40 Chapter 8. Contents

python-chess, Release 1.9.0

begin_game()→ Optional[chess.pgn.SkipType]
Called at the start of a game.

begin_headers()→ Optional[chess.pgn.Headers]
Called before visiting game headers.

visit_header(tagname: str, tagvalue: str)→ None
Called for each game header.

end_headers()→ Optional[chess.pgn.SkipType]
Called after visiting game headers.

parse_san(board: chess.Board, san: str)→ chess.Move
When the visitor is used by a parser, this is called to parse a move in standard algebraic notation.

You can override the default implementation to work around specific quirks of your input format.

Deprecated since version 1.1: This method is very limited, because it is only called on moves that the
parser recognizes in the first place. Instead of adding workarounds here, please report common quirks so
that they can be handled for everyone.

visit_move(board: chess.Board, move: chess.Move)→ None
Called for each move.

board is the board state before the move. The board state must be restored before the traversal continues.

visit_board(board: chess.Board)→ None
Called for the starting position of the game and after each move.

The board state must be restored before the traversal continues.

visit_comment(comment: str)→ None
Called for each comment.

visit_nag(nag: int)→ None
Called for each NAG.

begin_variation()→ Optional[chess.pgn.SkipType]
Called at the start of a new variation. It is not called for the mainline of the game.

end_variation()→ None
Concludes a variation.

visit_result(result: str)→ None
Called at the end of a game with the value from the Result header.

end_game()→ None
Called at the end of a game.

abstract result()→ ResultT
Called to get the result of the visitor.

handle_error(error: Exception)→ None
Called for encountered errors. Defaults to raising an exception.

The following visitors are readily available.

class chess.pgn.GameBuilder
class chess.pgn.GameBuilder(*, Game: Type[GameT])

Creates a game model. Default visitor for read_game().

handle_error(error: Exception)→ None
Populates chess.pgn.Game.errors with encountered errors and logs them.

You can silence the log and handle errors yourself after parsing:

8.2. PGN parsing and writing 41

python-chess, Release 1.9.0

>>> import chess.pgn
>>> import logging
>>>
>>> logging.getLogger("chess.pgn").setLevel(logging.CRITICAL)
>>>
>>> pgn = open("data/pgn/kasparov-deep-blue-1997.pgn")
>>>
>>> game = chess.pgn.read_game(pgn)
>>> game.errors # List of exceptions
[]

You can also override this method to hook into error handling:

>>> import chess.pgn
>>>
>>> class MyGameBuilder(chess.pgn.GameBuilder):
>>> def handle_error(self, error: Exception) -> None:
>>> pass # Ignore error
>>>
>>> pgn = open("data/pgn/kasparov-deep-blue-1997.pgn")
>>>
>>> game = chess.pgn.read_game(pgn, Visitor=MyGameBuilder)

result()→ GameT
Returns the visited Game().

class chess.pgn.HeadersBuilder
class chess.pgn.HeadersBuilder(*, Headers: Type[chess.pgn.Headers])

Collects headers into a dictionary.

class chess.pgn.BoardBuilder(*args, **kwds)
Returns the final position of the game. The mainline of the game is on the move stack.

class chess.pgn.SkipVisitor(*args, **kwds)
Skips a game.

class chess.pgn.StringExporter(*, columns: Optional[int] = 80, headers: bool = True, com-
ments: bool = True, variations: bool = True)

Allows exporting a game as a string.

>>> import chess.pgn
>>>
>>> game = chess.pgn.Game()
>>>
>>> exporter = chess.pgn.StringExporter(headers=True, variations=True,
→˓comments=True)
>>> pgn_string = game.accept(exporter)

Only columns characters are written per line. If columns is None, then the entire movetext will be on a single
line. This does not affect header tags and comments.

There will be no newline characters at the end of the string.

class chess.pgn.FileExporter(handle: TextIO, *, columns: Optional[int] = 80, headers: bool =
True, comments: bool = True, variations: bool = True)

Acts like a StringExporter, but games are written directly into a text file.

There will always be a blank line after each game. Handling encodings is up to the caller.

42 Chapter 8. Contents

python-chess, Release 1.9.0

>>> import chess.pgn
>>>
>>> game = chess.pgn.Game()
>>>
>>> new_pgn = open("/dev/null", "w", encoding="utf-8")
>>> exporter = chess.pgn.FileExporter(new_pgn)
>>> game.accept(exporter)

8.2.5 NAGs

Numeric anotation glyphs describe moves and positions using standardized codes that are understood by many chess
programs. During PGN parsing, annotations like !, ?, !!, etc., are also converted to NAGs.

chess.pgn.NAG_GOOD_MOVE = 1
A good move. Can also be indicated by ! in PGN notation.

chess.pgn.NAG_MISTAKE = 2
A mistake. Can also be indicated by ? in PGN notation.

chess.pgn.NAG_BRILLIANT_MOVE = 3
A brilliant move. Can also be indicated by !! in PGN notation.

chess.pgn.NAG_BLUNDER = 4
A blunder. Can also be indicated by ?? in PGN notation.

chess.pgn.NAG_SPECULATIVE_MOVE = 5
A speculative move. Can also be indicated by !? in PGN notation.

chess.pgn.NAG_DUBIOUS_MOVE = 6
A dubious move. Can also be indicated by ?! in PGN notation.

8.2.6 Skimming

These functions allow for quickly skimming games without fully parsing them.

chess.pgn.read_headers(handle: TextIO)→ Optional[chess.pgn.Headers]
Reads game headers from a PGN file opened in text mode. Skips the rest of the game.

Since actually parsing many games from a big file is relatively expensive, this is a better way to look only for
specific games and then seek and parse them later.

This example scans for the first game with Kasparov as the white player.

>>> import chess.pgn
>>>
>>> pgn = open("data/pgn/kasparov-deep-blue-1997.pgn")
>>>
>>> kasparov_offsets = []
>>>
>>> while True:
... offset = pgn.tell()
...
... headers = chess.pgn.read_headers(pgn)
... if headers is None:
... break
...

(continues on next page)

8.2. PGN parsing and writing 43

python-chess, Release 1.9.0

(continued from previous page)

... if "Kasparov" in headers.get("White", "?"):

... kasparov_offsets.append(offset)

Then it can later be seeked and parsed.

>>> for offset in kasparov_offsets:
... pgn.seek(offset)
... chess.pgn.read_game(pgn)
0
<Game at ... ('Garry Kasparov' vs. 'Deep Blue (Computer)', 1997.??.??)>
1436
<Game at ... ('Garry Kasparov' vs. 'Deep Blue (Computer)', 1997.??.??)>
3067
<Game at ... ('Garry Kasparov' vs. 'Deep Blue (Computer)', 1997.??.??)>

chess.pgn.skip_game(handle: TextIO)→ bool
Skips a game. Returns True if a game was found and skipped.

8.3 Polyglot opening book reading

chess.polyglot.open_reader(path: Union[str, bytes, os.PathLike]) →
chess.polyglot.MemoryMappedReader

Creates a reader for the file at the given path.

The following example opens a book to find all entries for the start position:

>>> import chess
>>> import chess.polyglot
>>>
>>> board = chess.Board()
>>>
>>> with chess.polyglot.open_reader("data/polyglot/performance.bin") as reader:
... for entry in reader.find_all(board):
... print(entry.move, entry.weight, entry.learn)
e2e4 1 0
d2d4 1 0
c2c4 1 0

class chess.polyglot.Entry(key: int, raw_move: int, weight: int, learn: int, move: chess.Move)
An entry from a Polyglot opening book.

key: int
The Zobrist hash of the position.

raw_move: int
The raw binary representation of the move. Use move instead.

weight: int
An integer value that can be used as the weight for this entry.

learn: int
Another integer value that can be used for extra information.

move: chess.Move
The Move.

44 Chapter 8. Contents

python-chess, Release 1.9.0

class chess.polyglot.MemoryMappedReader(filename: Union[str, bytes, os.PathLike])
Maps a Polyglot opening book to memory.

find_all(board: Union[chess.Board, int], *, minimum_weight: int = 1, exclude_moves: Con-
tainer[chess.Move] = [])→ Iterator[chess.polyglot.Entry]

Seeks a specific position and yields corresponding entries.

find(board: Union[chess.Board, int], *, minimum_weight: int = 1, exclude_moves: Con-
tainer[chess.Move] = [])→ chess.polyglot.Entry

Finds the main entry for the given position or Zobrist hash.

The main entry is the (first) entry with the highest weight.

By default, entries with weight 0 are excluded. This is a common way to delete entries from an opening
book without compacting it. Pass minimum_weight 0 to select all entries.

Raises IndexError if no entries are found. Use get() if you prefer to get None instead of
an exception.

choice(board: Union[chess.Board, int], *, minimum_weight: int = 1, exclude_moves:
Container[chess.Move] = [], random: Optional[random.Random] = None) →
chess.polyglot.Entry

Uniformly selects a random entry for the given position.

Raises IndexError if no entries are found.

weighted_choice(board: Union[chess.Board, int], *, exclude_moves: Container[chess.Move] = [],
random: Optional[random.Random] = None)→ chess.polyglot.Entry

Selects a random entry for the given position, distributed by the weights of the entries.

Raises IndexError if no entries are found.

close()→ None
Closes the reader.

chess.polyglot.POLYGLOT_RANDOM_ARRAY = [0x9D39247E33776D41, ..., 0xF8D626AAAF278509]
Array of 781 polyglot compatible pseudo random values for Zobrist hashing.

chess.polyglot.zobrist_hash(board: chess.Board, *, _hasher: Callable[[chess.Board], int] =
<chess.polyglot.ZobristHasher object>)→ int

Calculates the Polyglot Zobrist hash of the position.

A Zobrist hash is an XOR of pseudo-random values picked from an array. Which values are picked is decided
by features of the position, such as piece positions, castling rights and en passant squares.

8.4 Gaviota endgame tablebase probing

Gaviota tablebases provide WDL (win/draw/loss) and DTM (depth to mate) information for all endgame positions
with up to 5 pieces. Positions with castling rights are not included.

Warning: Ensure tablebase files match the known checksums. Maliciously crafted tablebase files may cause
denial of service with PythonTablebase and memory unsafety with NativeTablebase.

chess.gaviota.open_tablebase(directory: str, *, libgtb: Optional[str] = None, LibraryLoader:
ctypes.LibraryLoader[ctypes.CDLL] = <ctypes.LibraryLoader ob-
ject>)→ Union[NativeTablebase, PythonTablebase]

Opens a collection of tables for probing.

8.4. Gaviota endgame tablebase probing 45

python-chess, Release 1.9.0

First native access via the shared library libgtb is tried. You can optionally provide a specific library name or a
library loader. The shared library has global state and caches, so only one instance can be open at a time.

Second, pure Python probing code is tried.

class chess.gaviota.PythonTablebase
Provides access to Gaviota tablebases using pure Python code.

add_directory(directory: str)→ None
Adds .gtb.cp4 tables from a directory. The relevant files are lazily opened when the tablebase is actually
probed.

probe_dtm(board: chess.Board)→ int
Probes for depth to mate information.

The absolute value is the number of half-moves until forced mate (or 0 in drawn positions). The value is
positive if the side to move is winning, otherwise it is negative.

In the example position, white to move will get mated in 10 half-moves:

>>> import chess
>>> import chess.gaviota
>>>
>>> with chess.gaviota.open_tablebase("data/gaviota") as tablebase:
... board = chess.Board("8/8/8/8/8/8/8/K2kr3 w - - 0 1")
... print(tablebase.probe_dtm(board))
...
-10

Raises KeyError (or specifically chess.gaviota.MissingTableError) if the probe
fails. Use get_dtm() if you prefer to get None instead of an exception.

Note that probing a corrupted table file is undefined behavior.

probe_wdl(board: chess.Board)→ int
Probes for win/draw/loss information.

Returns 1 if the side to move is winning, 0 if it is a draw, and -1 if the side to move is losing.

>>> import chess
>>> import chess.gaviota
>>>
>>> with chess.gaviota.open_tablebase("data/gaviota") as tablebase:
... board = chess.Board("8/4k3/8/B7/8/8/8/4K3 w - - 0 1")
... print(tablebase.probe_wdl(board))
...
0

Raises KeyError (or specifically chess.gaviota.MissingTableError) if the probe
fails. Use get_wdl() if you prefer to get None instead of an exception.

Note that probing a corrupted table file is undefined behavior.

close()→ None
Closes all loaded tables.

46 Chapter 8. Contents

python-chess, Release 1.9.0

8.4.1 libgtb

For faster access you can build and install a shared library. Otherwise the pure Python probing code is used.

git clone https://github.com/michiguel/Gaviota-Tablebases.git
cd Gaviota-Tablebases
make
sudo make install

chess.gaviota.open_tablebase_native(directory: str, *, libgtb: Optional[str] = None,
LibraryLoader: ctypes.LibraryLoader[ctypes.CDLL] =
<ctypes.LibraryLoader object>)→ NativeTablebase

Opens a collection of tables for probing using libgtb.

In most cases open_tablebase() should be used. Use this function only if you do not want to downgrade
to pure Python tablebase probing.

Raises RuntimeError or OSError when libgtb can not be used.

class chess.gaviota.NativeTablebase(libgtb: ctypes.CDLL)
Provides access to Gaviota tablebases via the shared library libgtb. Has the same interface as
PythonTablebase.

8.5 Syzygy endgame tablebase probing

Syzygy tablebases provide WDL50 (win/draw/loss under the 50-move rule) and DTZ50” (distance to zeroing) informa-
tion with rounding for all endgame positions with up to 7 pieces. Positions with castling rights are not included.

Warning: Ensure tablebase files match the known checksums. Maliciously crafted tablebase files may cause
denial of service.

chess.syzygy.open_tablebase(directory: str, *, load_wdl: bool = True, load_dtz: bool = True,
max_fds: Optional[int] = 128, VariantBoard: Type[chess.Board] =
<class 'chess.Board'>)→ chess.syzygy.Tablebase

Opens a collection of tables for probing. See Tablebase.

Note: Generally probing requires tablebase files for the specific material composition, as well as material
compositions transitively reachable by captures and promotions. This is important because 6-piece and 5-
piece (let alone 7-piece) files are often distributed separately, but are both required for 6-piece positions. Use
add_directory() to load tables from additional directories.

class chess.syzygy.Tablebase(*, max_fds: Optional[int] = 128, VariantBoard: Type[chess.Board]
= <class 'chess.Board'>)

Manages a collection of tablebase files for probing.

If max_fds is not None, will at most use max_fds open file descriptors at any given time. The least recently used
tables are closed, if necessary.

add_directory(directory: str, *, load_wdl: bool = True, load_dtz: bool = True)→ int
Adds tables from a directory.

By default, all available tables with the correct file names (e.g., WDL files like KQvKN.rtbw and DTZ
files like KRBvK.rtbz) are added.

The relevant files are lazily opened when the tablebase is actually probed.

8.5. Syzygy endgame tablebase probing 47

https://github.com/michiguel/Gaviota-Tablebases

python-chess, Release 1.9.0

Returns the number of table files that were found.

probe_wdl(board: chess.Board)→ int
Probes WDL tables for win/draw/loss information under the 50-move rule, assuming the position has been
reached directly after a capture or pawn move.

Probing is thread-safe when done with different board objects and if board objects are not modified during
probing.

Returns 2 if the side to move is winning, 0 if the position is a draw and -2 if the side to move is losing.

Returns 1 in case of a cursed win and -1 in case of a blessed loss. Mate can be forced but the position can
be drawn due to the fifty-move rule.

>>> import chess
>>> import chess.syzygy
>>>
>>> with chess.syzygy.open_tablebase("data/syzygy/regular") as tablebase:
... board = chess.Board("8/2K5/4B3/3N4/8/8/4k3/8 b - - 0 1")
... print(tablebase.probe_wdl(board))
...
-2

Raises KeyError (or specifically chess.syzygy.MissingTableError) if the position
could not be found in the tablebase. Use get_wdl() if you prefer to get None instead of
an exception.

Note that probing corrupted table files is undefined behavior.

probe_dtz(board: chess.Board)→ int
Probes DTZ tables for DTZ50” information with rounding.

Minmaxing the DTZ50” values guarantees winning a won position (and drawing a drawn position), be-
cause it makes progress keeping the win in hand. However, the lines are not always the most straight-
forward ways to win. Engines like Stockfish calculate themselves, checking with DTZ, but only play
according to DTZ if they can not manage on their own.

Returns a positive value if the side to move is winning, 0 if the position is a draw, and a negative value if
the side to move is losing. More precisely:

WDL DTZ
-2 -100 <=

n <= -1
Unconditional loss (assuming 50-move counter is zero), where a zeroing move can
be forced in -n plies.

-1 n < -100 Loss, but draw under the 50-move rule. A zeroing move can be forced in -n plies or
-n - 100 plies (if a later phase is responsible for the blessed loss).

0 0 Draw.
1 100 < n Win, but draw under the 50-move rule. A zeroing move can be forced in n plies or n

- 100 plies (if a later phase is responsible for the cursed win).
2 1 <= n

<= 100
Unconditional win (assuming 50-move counter is zero), where a zeroing move can
be forced in n plies.

The return value can be off by one: a return value -n can mean a losing zeroing move in in n + 1 plies and
a return value +n can mean a winning zeroing move in n + 1 plies. This implies some primary tablebase
lines may waste up to 1 ply. Rounding is never used for endgame phases where it would change the game
theoretical outcome.

48 Chapter 8. Contents

https://syzygy-tables.info/metrics#dtz

python-chess, Release 1.9.0

This means users need to be careful in positions that are nearly drawn under the 50-move rule! Carelessly
wasting 1 more ply by not following the tablebase recommendation, for a total of 2 wasted plies, may
change the outcome of the game.

>>> import chess
>>> import chess.syzygy
>>>
>>> with chess.syzygy.open_tablebase("data/syzygy/regular") as tablebase:
... board = chess.Board("8/2K5/4B3/3N4/8/8/4k3/8 b - - 0 1")
... print(tablebase.probe_dtz(board))
...
-53

Probing is thread-safe when done with different board objects and if board objects are not modified during
probing.

Both DTZ and WDL tables are required in order to probe for DTZ.

Raises KeyError (or specifically chess.syzygy.MissingTableError) if the position
could not be found in the tablebase. Use get_dtz() if you prefer to get None instead of
an exception.

Note that probing corrupted table files is undefined behavior.

close()→ None
Closes all loaded tables.

8.6 UCI/XBoard engine communication

The Universal chess interface (UCI) and XBoard protocol are standards for communicating with chess engines. This
module implements an abstraction for playing moves and analysing positions with both kinds of engines.

Warning: Many popular chess engines make no guarantees, not even memory safety, when parameters and
positions are not completely valid. This module tries to deal with benign misbehaving engines, but ultimately
they are executables running on your system.

The preferred way to use the API is with an asyncio event loop. The examples also show a synchronous wrapper
SimpleEngine that automatically spawns an event loop in the background.

8.6.1 Playing

Example: Let Stockfish play against itself, 100 milliseconds per move.

import chess
import chess.engine

engine = chess.engine.SimpleEngine.popen_uci(r"C:\Users\xxxxx\Downloads\stockfish_14_
→˓win_x64\stockfish_14_win_x64_avx2.exe")

board = chess.Board()
while not board.is_game_over():

result = engine.play(board, chess.engine.Limit(time=0.1))
board.push(result.move)

(continues on next page)

8.6. UCI/XBoard engine communication 49

https://backscattering.de/chess/uci/
https://www.gnu.org/software/xboard/engine-intf.html
https://docs.python.org/3/library/asyncio.html

python-chess, Release 1.9.0

(continued from previous page)

engine.quit()

import asyncio
import chess
import chess.engine

async def main() -> None:
transport, engine = await chess.engine.popen_uci(r"C:\Users\xxxxx\Downloads\

→˓stockfish_14_win_x64\stockfish_14_win_x64_avx2.exe")

board = chess.Board()
while not board.is_game_over():

result = await engine.play(board, chess.engine.Limit(time=0.1))
board.push(result.move)

await engine.quit()

asyncio.set_event_loop_policy(chess.engine.EventLoopPolicy())
asyncio.run(main())

class chess.engine.Protocol
Protocol for communicating with a chess engine process.

abstract async play(board: chess.Board, limit: chess.engine.Limit, *, game: Optional[object] =
None, info: chess.engine.Info = <Info.NONE: 0>, ponder: bool = False,
draw_offered: bool = False, root_moves: Optional[Iterable[chess.Move]]
= None, options: Mapping[str, Optional[Union[str, int, bool]]] = {}) →
chess.engine.PlayResult

Plays a position.

Parameters

• board – The position. The entire move stack will be sent to the engine.

• limit – An instance of chess.engine.Limit that determines when to stop thinking.

• game – Optional. An arbitrary object that identifies the game. Will automatically inform
the engine if the object is not equal to the previous game (e.g., ucinewgame, new).

• info – Selects which additional information to retrieve from the engine. INFO_NONE,
INFO_BASE (basic information that is trivial to obtain), INFO_SCORE, INFO_PV,
INFO_REFUTATION, INFO_CURRLINE, INFO_ALL or any bitwise combination.
Some overhead is associated with parsing extra information.

• ponder – Whether the engine should keep analysing in the background even after the
result has been returned.

• draw_offered – Whether the engine’s opponent has offered a draw. Ignored by UCI
engines.

• root_moves – Optional. Consider only root moves from this list.

• options – Optional. A dictionary of engine options for the analysis. The previous
configuration will be restored after the analysis is complete. You can permanently apply a
configuration with configure().

50 Chapter 8. Contents

python-chess, Release 1.9.0

class chess.engine.Limit(time: Optional[float] = None, depth: Optional[int] = None, nodes:
Optional[int] = None, mate: Optional[int] = None, white_clock: Op-
tional[float] = None, black_clock: Optional[float] = None, white_inc:
Optional[float] = None, black_inc: Optional[float] = None, remain-
ing_moves: Optional[int] = None)

Search-termination condition.

time: Optional[float] = None
Search exactly time seconds.

depth: Optional[int] = None
Search depth ply only.

nodes: Optional[int] = None
Search only a limited number of nodes.

mate: Optional[int] = None
Search for a mate in mate moves.

white_clock: Optional[float] = None
Time in seconds remaining for White.

black_clock: Optional[float] = None
Time in seconds remaining for Black.

white_inc: Optional[float] = None
Fisher increment for White, in seconds.

black_inc: Optional[float] = None
Fisher increment for Black, in seconds.

remaining_moves: Optional[int] = None
Number of moves to the next time control. If this is not set, but white_clock and black_clock are, then it is
sudden death.

class chess.engine.PlayResult(move: Optional[chess.Move], ponder: Optional[chess.Move],
info: Optional[chess.engine.InfoDict] = None, *, draw_offered:
bool = False, resigned: bool = False)

Returned by chess.engine.Protocol.play().

move: Optional[chess.Move]
The best move according to the engine, or None.

ponder: Optional[chess.Move]
The response that the engine expects after move, or None.

info: chess.engine.InfoDict
A dictionary of extra information sent by the engine, if selected with the info argument of play().

draw_offered: bool
Whether the engine offered a draw before moving.

resigned: bool
Whether the engine resigned.

8.6. UCI/XBoard engine communication 51

python-chess, Release 1.9.0

8.6.2 Analysing and evaluating a position

Example:

import chess
import chess.engine

engine = chess.engine.SimpleEngine.popen_uci("/usr/bin/stockfish")

board = chess.Board()
info = engine.analyse(board, chess.engine.Limit(time=0.1))
print("Score:", info["score"])
Score: PovScore(Cp(+20), WHITE)

board = chess.Board("r1bqkbnr/p1pp1ppp/1pn5/4p3/2B1P3/5Q2/PPPP1PPP/RNB1K1NR w KQkq -
→˓2 4")
info = engine.analyse(board, chess.engine.Limit(depth=20))
print("Score:", info["score"])
Score: PovScore(Mate(+1), WHITE)

engine.quit()

import asyncio
import chess
import chess.engine

async def main() -> None:
transport, engine = await chess.engine.popen_uci("/usr/bin/stockfish")

board = chess.Board()
info = await engine.analyse(board, chess.engine.Limit(time=0.1))
print(info["score"])
Score: PovScore(Cp(+20), WHITE)

board = chess.Board("r1bqkbnr/p1pp1ppp/1pn5/4p3/2B1P3/5Q2/PPPP1PPP/RNB1K1NR w
→˓KQkq - 2 4")

info = await engine.analyse(board, chess.engine.Limit(depth=20))
print(info["score"])
Score: PovScore(Mate(+1), WHITE)

await engine.quit()

asyncio.set_event_loop_policy(chess.engine.EventLoopPolicy())
asyncio.run(main())

class chess.engine.Protocol
Protocol for communicating with a chess engine process.

async analyse(board: chess.Board, limit: chess.engine.Limit, *, game: object = 'None',
info: chess.engine.Info = 'INFO_ALL', root_moves: Optional[Iterable[chess.Move]]
= 'None', options: Mapping[str, Optional[Union[str, int, bool]]] = '{}') →
chess.engine.InfoDict

async analyse(board: chess.Board, limit: chess.engine.Limit, *, multipv: int, game: object = 'None',
info: chess.engine.Info = 'INFO_ALL', root_moves: Optional[Iterable[chess.Move]]
= 'None', options: Mapping[str, Optional[Union[str, int, bool]]] = '{}') →
List[chess.engine.InfoDict]

52 Chapter 8. Contents

python-chess, Release 1.9.0

async analyse(board: chess.Board, limit: chess.engine.Limit, *, multipv: Optional[int] = 'None',
game: object = 'None', info: chess.engine.Info = 'INFO_ALL', root_moves: Op-
tional[Iterable[chess.Move]] = 'None', options: Mapping[str, Optional[Union[str,
int, bool]]] = '{}')→ Union[List[chess.engine.InfoDict], chess.engine.InfoDict]

Analyses a position and returns a dictionary of information.

Parameters

• board – The position to analyse. The entire move stack will be sent to the engine.

• limit – An instance of chess.engine.Limit that determines when to stop the anal-
ysis.

• multipv – Optional. Analyse multiple root moves. Will return a list of at most multipv
dictionaries rather than just a single info dictionary.

• game – Optional. An arbitrary object that identifies the game. Will automatically inform
the engine if the object is not equal to the previous game (e.g., ucinewgame, new).

• info – Selects which information to retrieve from the engine. INFO_NONE,
INFO_BASE (basic information that is trivial to obtain), INFO_SCORE, INFO_PV,
INFO_REFUTATION, INFO_CURRLINE, INFO_ALL or any bitwise combination.
Some overhead is associated with parsing extra information.

• root_moves – Optional. Limit analysis to a list of root moves.

• options – Optional. A dictionary of engine options for the analysis. The previous
configuration will be restored after the analysis is complete. You can permanently apply a
configuration with configure().

class chess.engine.InfoDict(*args, **kwargs)
Dictionary of aggregated information sent by the engine.

Commonly used keys are: score (a PovScore), pv (a list of Move objects), depth, seldepth, time (in
seconds), nodes, nps, multipv (1 for the mainline).

Others: tbhits, currmove, currmovenumber, hashfull, cpuload, refutation, currline,
ebf (effective branching factor), wdl (a PovWdl), and string.

class chess.engine.PovScore(relative: chess.engine.Score, turn: chess.Color)
A relative Score and the point of view.

relative: chess.engine.Score
The relative Score.

turn: chess.Color
The point of view (chess.WHITE or chess.BLACK).

white()→ chess.engine.Score
Gets the score from White’s point of view.

black()→ chess.engine.Score
Gets the score from Black’s point of view.

pov(color: chess.Color)→ chess.engine.Score
Gets the score from the point of view of the given color.

is_mate()→ bool
Tests if this is a mate score.

wdl(*, model: Literal[sf, sf14, sf12, lichess] = 'sf', ply: int = 30)→ chess.engine.PovWdl
See wdl().

8.6. UCI/XBoard engine communication 53

python-chess, Release 1.9.0

class chess.engine.Score
Evaluation of a position.

The score can be Cp (centi-pawns), Mate or MateGiven. A positive value indicates an advantage.

There is a total order defined on centi-pawn and mate scores.

>>> from chess.engine import Cp, Mate, MateGiven
>>>
>>> Mate(-0) < Mate(-1) < Cp(-50) < Cp(200) < Mate(4) < Mate(1) < MateGiven
True

Scores can be negated to change the point of view:

>>> -Cp(20)
Cp(-20)

>>> -Mate(-4)
Mate(+4)

>>> -Mate(0)
MateGiven

abstract score(*, mate_score: int)→ int
abstract score(*, mate_score: Optional[int] = 'None')→ Optional[int]

Returns the centi-pawn score as an integer or None.

You can optionally pass a large value to convert mate scores to centi-pawn scores.

>>> Cp(-300).score()
-300
>>> Mate(5).score() is None
True
>>> Mate(5).score(mate_score=100000)
99995

abstract mate()→ Optional[int]
Returns the number of plies to mate, negative if we are getting mated, or None.

Warning: This conflates Mate(0) (we lost) and MateGiven (we won) to 0.

is_mate()→ bool
Tests if this is a mate score.

abstract wdl(*, model: Literal[sf, sf14, sf12, lichess] = 'sf', ply: int = 30)→ chess.engine.Wdl
Returns statistics for the expected outcome of this game, based on a model, given that this score is reached
at ply.

Scores have a total order, but it makes little sense to compute the difference between two scores. For
example, going from Cp(-100) to Cp(+100) is much more significant than going from Cp(+300)
to Cp(+500). It is better to compute differences of the expectation values for the outcome of the game
(based on winning chances and drawing chances).

>>> Cp(100).wdl().expectation() - Cp(-100).wdl().expectation()
0.379...

54 Chapter 8. Contents

python-chess, Release 1.9.0

>>> Cp(500).wdl().expectation() - Cp(300).wdl().expectation()
0.015...

Parameters

• model –

– sf, the WDL model used by the latest Stockfish (currently sf14).

– sf14, the WDL model used by Stockfish 14.

– sf12, the WDL model used by Stockfish 12.

– lichess, the win rate model used by Lichess. Does not use ply, and does not consider
drawing chances.

• ply – The number of half-moves played since the starting position. Models may scale
scores slightly differently based on this. Defaults to middle game.

class chess.engine.PovWdl(relative: chess.engine.Wdl, turn: chess.Color)
Relative win/draw/loss statistics and the point of view.

Deprecated since version 1.2: Behaves like a tuple (wdl.relative.wins, wdl.relative.draws,
wdl.relative.losses) for backwards compatibility. But it is recommended to use the provided fields
and methods instead.

relative: chess.engine.Wdl
The relative Wdl.

turn: chess.Color
The point of view (chess.WHITE or chess.BLACK).

white()→ chess.engine.Wdl
Gets the Wdl from White’s point of view.

black()→ chess.engine.Wdl
Gets the Wdl from Black’s point of view.

pov(color: chess.Color)→ chess.engine.Wdl
Gets the Wdl from the point of view of the given color.

class chess.engine.Wdl(wins: int, draws: int, losses: int)
Win/draw/loss statistics.

wins: int
The number of wins.

draws: int
The number of draws.

losses: int
The number of losses.

total()→ int
Returns the total number of games. Usually, wdl reported by engines is scaled to 1000 games.

winning_chance()→ float
Returns the relative frequency of wins.

drawing_chance()→ float
Returns the relative frequency of draws.

8.6. UCI/XBoard engine communication 55

python-chess, Release 1.9.0

losing_chance()→ float
Returns the relative frequency of losses.

expectation()→ float
Returns the expectation value, where a win is valued 1, a draw is valued 0.5, and a loss is valued 0.

8.6.3 Indefinite or infinite analysis

Example: Stream information from the engine and stop on an arbitrary condition.

import chess
import chess.engine

engine = chess.engine.SimpleEngine.popen_uci("/usr/bin/stockfish")

with engine.analysis(chess.Board()) as analysis:
for info in analysis:

print(info.get("score"), info.get("pv"))

Arbitrary stop condition.
if info.get("seldepth", 0) > 20:

break

engine.quit()

import asyncio
import chess
import chess.engine

async def main() -> None:
transport, engine = await chess.engine.popen_uci("/usr/bin/stockfish")

with await engine.analysis(chess.Board()) as analysis:
async for info in analysis:

print(info.get("score"), info.get("pv"))

Arbitrary stop condition.
if info.get("seldepth", 0) > 20:

break

await engine.quit()

asyncio.set_event_loop_policy(chess.engine.EventLoopPolicy())
asyncio.run(main())

class chess.engine.Protocol
Protocol for communicating with a chess engine process.

abstract async analysis(board: chess.Board, limit: Optional[chess.engine.Limit] = None,
*, multipv: Optional[int] = None, game: Optional[object] =
None, info: chess.engine.Info = <Info.ALL: 31>, root_moves: Op-
tional[Iterable[chess.Move]] = None, options: Mapping[str, Op-
tional[Union[str, int, bool]]] = {})→ chess.engine.AnalysisResult

Starts analysing a position.

Parameters

• board – The position to analyse. The entire move stack will be sent to the engine.

56 Chapter 8. Contents

python-chess, Release 1.9.0

• limit – Optional. An instance of chess.engine.Limit that determines when to
stop the analysis. Analysis is infinite by default.

• multipv – Optional. Analyse multiple root moves.

• game – Optional. An arbitrary object that identifies the game. Will automatically inform
the engine if the object is not equal to the previous game (e.g., ucinewgame, new).

• info – Selects which information to retrieve from the engine. INFO_NONE,
INFO_BASE (basic information that is trivial to obtain), INFO_SCORE, INFO_PV,
INFO_REFUTATION, INFO_CURRLINE, INFO_ALL or any bitwise combination.
Some overhead is associated with parsing extra information.

• root_moves – Optional. Limit analysis to a list of root moves.

• options – Optional. A dictionary of engine options for the analysis. The previous
configuration will be restored after the analysis is complete. You can permanently apply a
configuration with configure().

Returns AnalysisResult, a handle that allows asynchronously iterating over the information sent by
the engine and stopping the analysis at any time.

class chess.engine.AnalysisResult(stop: Optional[Callable[], None]] = None)
Handle to ongoing engine analysis. Returned by chess.engine.Protocol.analysis().

Can be used to asynchronously iterate over information sent by the engine.

Automatically stops the analysis when used as a context manager.

multipv: List[chess.engine.InfoDict]
A list of dictionaries with aggregated information sent by the engine. One item for each root move.

property info
A dictionary of aggregated information sent by the engine. This is actually an alias for multipv[0].

stop()→ None
Stops the analysis as soon as possible.

async wait()→ chess.engine.BestMove
Waits until the analysis is complete (or stopped).

async get()→ chess.engine.InfoDict
Waits for the next dictionary of information from the engine and returns it.

It might be more convenient to use async for info in analysis:

Raises chess.engine.AnalysisComplete if the analysis is complete (or has been
stopped) and all information has been consumed. Use next() if you prefer to get None
instead of an exception.

empty()→ bool
Checks if all information has been consumed.

If the queue is empty, but the analysis is still ongoing, then further information can become available in
the future.

If the queue is not empty, then the next call to get() will return instantly.

class chess.engine.BestMove(move: Optional[chess.Move], ponder: Optional[chess.Move])
Returned by chess.engine.AnalysisResult.wait().

move: Optional[chess.Move]
The best move according to the engine, or None.

8.6. UCI/XBoard engine communication 57

python-chess, Release 1.9.0

ponder: Optional[chess.Move]
The response that the engine expects after move, or None.

8.6.4 Options

configure(), play(), analyse() and analysis() accept a dictionary of options.

>>> import chess.engine
>>>
>>> engine = chess.engine.SimpleEngine.popen_uci("/usr/bin/stockfish")
>>>
>>> # Check available options.
>>> engine.options["Hash"]
Option(name='Hash', type='spin', default=16, min=1, max=131072, var=[])
>>>
>>> # Set an option.
>>> engine.configure({"Hash": 32})
>>>
>>> # [...]

import asyncio
import chess.engine

async def main() -> None:
transport, engine = await chess.engine.popen_uci("/usr/bin/stockfish")

Check available options.
print(engine.options["Hash"])
Option(name='Hash', type='spin', default=16, min=1, max=131072, var=[])

Set an option.
await engine.configure({"Hash": 32})

[...]

asyncio.set_event_loop_policy(chess.engine.EventLoopPolicy())
asyncio.run(main())

class chess.engine.Protocol
Protocol for communicating with a chess engine process.

options: MutableMapping[str, Option]
Dictionary of available options.

abstract async configure(options: Mapping[str, Optional[Union[str, int, bool]]])→ None
Configures global engine options.

Parameters options – A dictionary of engine options where the keys are names of
options. Do not set options that are managed automatically (chess.engine.
Option.is_managed()).

class chess.engine.Option(name: str, type: str, default: Optional[Union[str, int, bool]], min: Op-
tional[int], max: Optional[int], var: Optional[List[str]])

Information about an available engine option.

name: str
The name of the option.

58 Chapter 8. Contents

python-chess, Release 1.9.0

type: str
The type of the option.

type UCI CECP value
check X X True or False
spin X X integer, between min and max
combo X X string, one of var
button X X None
reset X None
save X None
string X X string without line breaks
file X string, interpreted as the path to a file
path X string, interpreted as the path to a directory

default: Optional[Union[str, int, bool]]
The default value of the option.

min: Optional[int]
The minimum integer value of a spin option.

max: Optional[int]
The maximum integer value of a spin option.

var: Optional[List[str]]
A list of allowed string values for a combo option.

is_managed()→ bool
Some options are managed automatically: UCI_Chess960, UCI_Variant, MultiPV, Ponder.

8.6.5 Logging

Communication is logged with debug level on a logger named chess.engine. Debug logs are useful while trou-
bleshooting. Please also provide them when submitting bug reports.

import logging

Enable debug logging.
logging.basicConfig(level=logging.DEBUG)

8.6.6 AsyncSSH

chess.engine.Protocol can also be used with AsyncSSH (since 1.16.0) to communicate with an engine on a
remote computer.

import asyncio
import asyncssh
import chess
import chess.engine

async def main() -> None:
async with asyncssh.connect("localhost") as conn:

channel, engine = await conn.create_subprocess(chess.engine.UciProtocol, "/
→˓usr/bin/stockfish")

await engine.initialize()

(continues on next page)

8.6. UCI/XBoard engine communication 59

https://asyncssh.readthedocs.io/en/latest/

python-chess, Release 1.9.0

(continued from previous page)

Play, analyse, ...
await engine.ping()

asyncio.run(main())

8.6.7 Reference

class chess.engine.EngineError
Runtime error caused by a misbehaving engine or incorrect usage.

class chess.engine.EngineTerminatedError
The engine process exited unexpectedly.

class chess.engine.AnalysisComplete
Raised when analysis is complete, all information has been consumed, but further information was requested.

async chess.engine.popen_uci(command: Union[str, List[str]], *, setp-
grp: bool = False, **popen_args: Any)
→ Tuple[asyncio.transports.SubprocessTransport,
chess.engine.UciProtocol]

Spawns and initializes a UCI engine.

Parameters

• command – Path of the engine executable, or a list including the path and arguments.

• setpgrp – Open the engine process in a new process group. This will stop signals (such
as keyboard interrupts) from propagating from the parent process. Defaults to False.

• popen_args – Additional arguments for popen. Do not set stdin, stdout, bufsize
or universal_newlines.

Returns a subprocess transport and engine protocol pair.

async chess.engine.popen_xboard(command: Union[str, List[str]], *, setp-
grp: bool = False, **popen_args: Any) →
Tuple[asyncio.transports.SubprocessTransport,
chess.engine.XBoardProtocol]

Spawns and initializes an XBoard engine.

Parameters

• command – Path of the engine executable, or a list including the path and arguments.

• setpgrp – Open the engine process in a new process group. This will stop signals (such
as keyboard interrupts) from propagating from the parent process. Defaults to False.

• popen_args – Additional arguments for popen. Do not set stdin, stdout, bufsize
or universal_newlines.

Returns a subprocess transport and engine protocol pair.

class chess.engine.Protocol
Protocol for communicating with a chess engine process.

id: Dict[str, str]
Dictionary of information about the engine. Common keys are name and author.

returncode: asyncio.Future[int]
Future: Exit code of the process.

60 Chapter 8. Contents

https://docs.python.org/3/library/subprocess.html#popen-constructor
https://docs.python.org/3/library/subprocess.html#popen-constructor

python-chess, Release 1.9.0

abstract async initialize()→ None
Initializes the engine.

abstract async ping()→ None
Pings the engine and waits for a response. Used to ensure the engine is still alive and idle.

abstract async quit()→ None
Asks the engine to shut down.

class chess.engine.UciProtocol
An implementation of the Universal Chess Interface protocol.

class chess.engine.XBoardProtocol
An implementation of the XBoard protocol (CECP).

class chess.engine.SimpleEngine(transport: asyncio.transports.SubprocessTransport, protocol:
chess.engine.Protocol, *, timeout: Optional[float] = 10.0)

Synchronous wrapper around a transport and engine protocol pair. Provides the same methods and attributes as
chess.engine.Protocol with blocking functions instead of coroutines.

You may not concurrently modify objects passed to any of the methods. Other than that, SimpleEngine is
thread-safe. When sending a new command to the engine, any previous running command will be cancelled as
soon as possible.

Methods will raise asyncio.TimeoutError if an operation takes timeout seconds longer than expected
(unless timeout is None).

Automatically closes the transport when used as a context manager.

close()→ None
Closes the transport and the background event loop as soon as possible.

classmethod popen_uci(command: Union[str, List[str]], *, timeout: Optional[float] = 10.0, de-
bug: bool = False, setpgrp: bool = False, **popen_args: Any) →
chess.engine.SimpleEngine

Spawns and initializes a UCI engine. Returns a SimpleEngine instance.

classmethod popen_xboard(command: Union[str, List[str]], *, timeout: Optional[float] = 10.0,
debug: bool = False, setpgrp: bool = False, **popen_args: Any)
→ chess.engine.SimpleEngine

Spawns and initializes an XBoard engine. Returns a SimpleEngine instance.

class chess.engine.SimpleAnalysisResult(simple_engine: chess.engine.SimpleEngine, inner:
chess.engine.AnalysisResult)

Synchronous wrapper around AnalysisResult. Returned by chess.engine.SimpleEngine.
analysis().

chess.engine.EventLoopPolicy()→ None
An event loop policy for thread-local event loops and child watchers. Ensures each event loop is capable of
spawning and watching subprocesses, even when not running on the main thread.

Windows: Uses ProactorEventLoop.

Unix: Uses SelectorEventLoop. If available, PidfdChildWatcher is used to detect subprocess ter-
mination (Python 3.9+ on Linux 5.3+). Otherwise, the default child watcher is used on the main thread and
relatively slow eager polling is used on all other threads.

8.6. UCI/XBoard engine communication 61

https://www.chessprogramming.org/UCI
http://hgm.nubati.net/CECP.html

python-chess, Release 1.9.0

8.7 SVG rendering

The chess.svgmodule renders SVG Tiny 1.2 images (mostly for IPython/Jupyter Notebook integration). The piece
images by Colin M.L. Burnett are triple licensed under the GFDL, BSD and GPL.

chess.svg.piece(piece: chess.Piece, size: Optional[int] = None)→ str
Renders the given chess.Piece as an SVG image.

>>> import chess
>>> import chess.svg
>>>
>>> chess.svg.piece(chess.Piece.from_symbol("R"))

chess.svg.board(board: Optional[chess.BaseBoard] = None, *, orientation: chess.Color = True, last-
move: Optional[chess.Move] = None, check: Optional[chess.Square] = None, ar-
rows: Iterable[Union[chess.svg.Arrow, Tuple[chess.Square, chess.Square]]] = [], fill:
Dict[chess.Square, str] = {}, squares: Optional[chess.IntoSquareSet] = None, size: Op-
tional[int] = None, coordinates: bool = True, colors: Dict[str, str] = {}, flipped: bool
= False, style: Optional[str] = None)→ str

Renders a board with pieces and/or selected squares as an SVG image.

Parameters

• board – A chess.BaseBoard for a chessboard with pieces, or None (the default) for
a chessboard without pieces.

• orientation – The point of view, defaulting to chess.WHITE.

• lastmove – A chess.Move to be highlighted.

• check – A square to be marked indicating a check.

• arrows – A list of Arrow objects, like [chess.svg.Arrow(chess.E2, chess.
E4)], or a list of tuples, like [(chess.E2, chess.E4)]. An arrow from a square
pointing to the same square is drawn as a circle, like [(chess.E2, chess.E2)].

• fill – A dictionary mapping squares to a colors that they should be filled with.

• squares – A chess.SquareSet with selected squares to mark with an X.

• size – The size of the image in pixels (e.g., 400 for a 400 by 400 board), or None (the
default) for no size limit.

• coordinates – Pass False to disable the coordinate margin.

• colors – A dictionary to override default colors. Possible keys are square light,
square dark, square light lastmove, square dark lastmove, margin,
coord, arrow green, arrow blue, arrow red, and arrow yellow. Values
should look like #ffce9e (opaque), or #15781B80 (transparent).

• flipped – Pass True to flip the board.

• style – A CSS stylesheet to include in the SVG image.

>>> import chess
>>> import chess.svg
>>>
>>> board = chess.Board("8/8/8/8/4N3/8/8/8 w - - 0 1")
>>>

(continues on next page)

62 Chapter 8. Contents

https://en.wikipedia.org/wiki/User:Cburnett

python-chess, Release 1.9.0

(continued from previous page)

>>> chess.svg.board(
... board,
... fill=dict.fromkeys(board.attacks(chess.E4), "#cc0000cc") | {chess.E4: "
→˓#00cc00cc"},
... arrows=[chess.svg.Arrow(chess.E4, chess.F6, color="#0000cccc")],
... squares=chess.SquareSet(chess.BB_DARK_SQUARES & chess.BB_FILE_B),
... size=350,
...)

Deprecated since version 1.1: Use orientation with a color instead of the flipped toggle.

class chess.svg.Arrow(tail: chess.Square, head: chess.Square, *, color: str = 'green')
Details of an arrow to be drawn.

tail: chess.Square
Start square of the arrow.

head: chess.Square
End square of the arrow.

color: str
Arrow color.

pgn()→ str
Returns the arrow in the format used by [%csl ...] and [%cal ...] PGN annotations, e.g., Ga1 or
Ya2h2.

Colors other than red, yellow, and blue default to green.

classmethod from_pgn(pgn: str)→ chess.svg.Arrow
Parses an arrow from the format used by [%csl ...] and [%cal ...] PGN annotations, e.g., Ga1
or Ya2h2.

Also allows skipping the color prefix, defaulting to green.

Raises ValueError if the format is invalid.

8.8 Variants

python-chess supports several chess variants.

>>> import chess.variant
>>>
>>> board = chess.variant.GiveawayBoard()

>>> # General information about the variants.
>>> type(board).uci_variant
'giveaway'
>>> type(board).xboard_variant
'giveaway'
>>> type(board).starting_fen
'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w - - 0 1'

8.8. Variants 63

python-chess, Release 1.9.0

Variant Board class UCI/XBoard Syzygy
Standard chess.Board chess/normal .rtbw, .rtbz
Suicide chess.variant.SuicideBoard suicide .stbw, .stbz
Giveaway chess.variant.GiveawayBoard giveaway .gtbw, .gtbz
Antichess chess.variant.AntichessBoard antichess .gtbw, .gtbz
Atomic chess.variant.AtomicBoard atomic .atbw, .atbz
King of the Hill chess.variant.KingOfTheHillBoard kingofthehill
Racing Kings chess.variant.RacingKingsBoard racingkings
Horde chess.variant.HordeBoard horde
Three-check chess.variant.ThreeCheckBoard 3check
Crazyhouse chess.variant.CrazyhouseBoard crazyhouse

chess.variant.find_variant(name: str)→ Type[chess.Board]
Looks for a variant board class by variant name. Supports many common aliases.

8.8.1 Game end

See chess.Board.is_variant_end(), is_variant_win(), is_variant_draw(), or
is_variant_loss() for special variant end conditions and results.

Note that if all of them return False, the game may still be over and decided by standard conditions like
is_checkmate(), is_stalemate(), is_insufficient_material(), move counters, repetitions, and
legitimate claims.

8.8.2 Chess960

Chess960 is orthogonal to all other variants.

>>> chess.Board(chess960=True)
Board('rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1', chess960=True)

See chess.BaseBoard.set_chess960_pos(), chess960_pos(), and from_chess960_pos() for
dealing with Chess960 starting positions.

8.8.3 Crazyhouse

class chess.variant.CrazyhousePocket(symbols: Iterable[str] = '')
A Crazyhouse pocket with a counter for each piece type.

add(piece_type: int)→ None
Adds a piece of the given type to this pocket.

remove(piece_type: int)→ None
Removes a piece of the given type from this pocket.

count(piece_type: int)→ int
Returns the number of pieces of the given type in the pocket.

reset()→ None
Clears the pocket.

copy()→ CrazyhousePocketT
Returns a copy of this pocket.

64 Chapter 8. Contents

python-chess, Release 1.9.0

class chess.variant.CrazyhouseBoard(fen: Optional[str] = 'rn-
bqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR[] w
KQkq - 0 1', chess960: bool = False)

pockets = [chess.variant.CrazyhousePocket(), chess.variant.CrazyhousePocket()]

Pockets for each color. For example, board.pockets[chess.WHITE] are the pocket
pieces available to White.

legal_drop_squares()→ chess.SquareSet
Gets the squares where the side to move could legally drop a piece. Does not check whether they actually
have a suitable piece in their pocket.

It is legal to drop a checkmate.

Returns a set of squares.

8.8.4 Three-check

class chess.variant.ThreeCheckBoard(fen: Optional[str] = 'rn-
bqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR
w KQkq - 3+3 0 1', chess960: bool = False)

remaining_checks = [3, 3]

Remaining checks until victory for each color. For example, board.
remaining_checks[chess.WHITE] == 0 implies that White has won.

8.8.5 UCI/XBoard

Multi-Variant Stockfish and other engines have an UCI_Variant option. XBoard engines may declare support for
variants. This is automatically managed.

>>> import chess.engine
>>>
>>> engine = chess.engine.SimpleEngine.popen_uci("stockfish-mv")
>>>
>>> board = chess.variant.RacingKingsBoard()
>>> result = engine.play(board, chess.engine.Limit(time=1.0))

8.8.6 Syzygy

Syzygy tablebases are available for suicide, giveaway and atomic chess.

>>> import chess.syzygy
>>> import chess.variant
>>>
>>> tables = chess.syzygy.open_tablebase("data/syzygy", VariantBoard=chess.variant.
→˓AtomicBoard)

8.8. Variants 65

https://github.com/ddugovic/Stockfish

python-chess, Release 1.9.0

8.9 Changelog for python-chess

8.9.1 New in v1.9.0

Bugfixes:

• Expand position validation to detect check conflicting with en passant square.

New features:

• Add chess.svg.board(..., fill=...).

• Let chess.svg.board() add ASCII board as description of SVG.

• Add hint when engine process dies due to illegal instruction.

8.9.2 New in v1.8.0

Bugfixes:

• Fix SquareSet.issuperset() and SquareSet.issubset() by swapping their respective imple-
mentations.

New features:

• Read and write PGN comments like [%emt 0:05:21].

8.9.3 New in v1.7.0

New features:

• Add new models for chess.engine.Score.wdl(): sf (the new default) and sf14.

• Add chess.Board.piece_map().

Bugfixes:

• chess.pgn: Fix skipping with nested variations.

• chess.svg: Make check gradient compatible with QtSvg.

8.9.4 New in v1.6.1

Bugfixes:

• Make chess.engine.SimpleEngine.play(..., draw_offered=True) available. Previously
only added for chess.engine.Protocol.

66 Chapter 8. Contents

python-chess, Release 1.9.0

8.9.5 New in v1.6.0

New features:

• Allow offering a draw to XBoard engines using chess.engine.Protocol.play(...,
draw_offered=True).

• Now detects insufficient material in Horde. Thanks @stevepapazis!

Changes:

• chess.engine.popen_engine(..., setpgrp=True) on Windows now merges
CREATE_NEW_PROCESS_GROUP into creationflags instead of overriding. On Unix it now uses
start_new_session instead of calling setpgrp in preexec_fn.

• Declare that chess.svg produces SVG Tiny 1.2, and prepare SVG 2 forwards compatibility.

Bugfixes:

• Fix slightly off-center pawns in chess.svg.

• Fix typing error in Python 3.10 (due to added int.bit_count).

8.9.6 New in v1.5.0

Bugfixes:

• Fixed typing of chess.pgn.Mainline.__reversed__(). It is now a generator, and chess.pgn.
ReverseMainline has been removed. This is a breaking change but a required bugfix.

• Implement UCI ponderhit for consecutive calls to chess.engine.Protocol.play(...,
ponder=True). Previously, the pondering search was always stopped and restarted.

• Provide the full move stack, not just the position, for UCI pondering.

• Fixed XBoard level in sudden death games.

• Ignore trailing space after ponder move sent by UCI engine. Previously, such a move would be rejected.

• Prevent cancelling engine commands after they have already been cancelled or completed. Some internals
(chess.engine.BaseCommand) have been changed to accomplish this.

New features:

• Added chess.Board.outcome().

• Implement and accept usermove feature for XBoard engines.

Special thanks to @MarkZH for many of the engine related changes in this release!

8.9.7 New in v1.4.0

New features:

• Let chess.pgn.GameNode.eval() accept PGN comments like [%eval 2.5,11], meaning 250 cen-
tipawns at depth 11. Use chess.pgn.GameNode.eval_depth() and chess.pgn.GameNode.
set_eval(..., depth) to get and set the depth.

• Read and write PGN comments with millisecond precision like [%clk 1:23:45.678].

Changes:

• Recover from invalid UTF-8 sent by an UCI engine, by ignoring that (and only that) line.

8.9. Changelog for python-chess 67

python-chess, Release 1.9.0

8.9.8 New in v1.3.3

Bugfixes:

• Fixed unintended collisions and optimized chess.Piece.__hash__().

• Fixed false-positive chess.STATUS_IMPOSSIBLE_CHECK if checkers are aligned with other king.

Changes:

• Also detect chess.STATUS_IMPOSSIBLE_CHECK if checker is aligned with en passant square and king.

New features:

• Implemented Lichess winning chance model for chess.engine.Score: score.
wdl(model="lichess").

8.9.9 New in v1.3.2

Bugfixes:

• Added a new reason for board.status() to be invalid: chess.STATUS_IMPOSSIBLE_CHECK. This
detects positions where two sliding pieces are giving check while also being aligned with the king on the same
rank, file, or diagonal. Such positions are impossible to reach, break Stockfish, and maybe other engines.

8.9.10 New in v1.3.1

Bugfixes:

• chess.pgn.read_game() now properly detects variant games with Chess960 castling rights (as well as
mislabeled Standard Chess960 games). Previously, all castling moves in such games were rejected.

8.9.11 New in v1.3.0

Changes:

• Introduced chess.pgn.ChildNode, a subclass of chess.pgn.GameNode for all nodes other than the
root node, and converted chess.pgn.GameNode to an abstract base class. This improves ergonomics in
typed code.

The change is backwards compatible if using only documented features. However, a notable undocumented
feature is the ability to create dangling nodes. This is no longer possible. If you have been using this for
subclassing, override GameNode.add_variation() instead of GameNode.dangling_node(). It is
now the only method that creates child nodes.

Bugfixes:

• Removed broken weakref-based caching in chess.pgn.GameNode.board().

New features:

• Added chess.pgn.GameNode.next().

68 Chapter 8. Contents

python-chess, Release 1.9.0

8.9.12 New in v1.2.2

Bugfixes:

• Fixed regression where releases were uploaded without the py.typed marker.

8.9.13 New in v1.2.1

Changes:

• The primary location for the published package is now https://pypi.org/project/chess/. Thanks to Kristian Glass
for transferring the namespace.

The old https://pypi.org/project/python-chess/ will remain an alias that installs the package from the new loca-
tion as a dependency (as recommended by PEP423).

ModuleNotFoundError: No module named 'chess' after upgrading from previous versions?
Run pip install --force-reinstall chess (due to https://github.com/niklasf/python-chess/
issues/680).

8.9.14 New in v1.2.0

New features:

• Added chess.Board.ply().

• Added chess.pgn.GameNode.ply() and chess.pgn.GameNode.turn().

• Added chess.engine.PovWdl, chess.engine.Wdl, and conversions from scores: chess.engine.
PovScore.wdl(), chess.engine.Score.wdl().

• Added chess.engine.Score.score(*, mate_score: int) -> int overload.

Changes:

• The PovScore returned by chess.pgn.GameNode.eval() is now always relative to the side to move.
The ambiguity around [%eval #0] has been resolved to Mate(-0). This makes sense, given that the authors
of the specification probably had standard chess in mind (where a game-ending move is always a loss for the
opponent). Previously, this would be parsed as None.

• Typed chess.engine.InfoDict["wdl"] as the new chess.engine.PovWdl, rather than
Tuple[int, int, int]. The new type is backwards compatible, but it is recommended to use its docu-
mented fields and methods instead.

• Removed chess.engine.PovScore.__str__(). String representation falls back to __repr__.

• The en_passant parameter of chess.Board.fen() and chess.Board.epd() is now typed as
Literal["legal", "fen", "xfen"] rather than str.

8.9. Changelog for python-chess 69

https://pypi.org/project/chess/
https://github.com/doismellburning
https://pypi.org/project/python-chess/
https://www.python.org/dev/peps/pep-0423/#how-to-rename-a-project
https://github.com/niklasf/python-chess/issues/680
https://github.com/niklasf/python-chess/issues/680

python-chess, Release 1.9.0

8.9.15 New in v1.1.0

New features:

• Added chess.svg.board(..., orientation). This is a more idiomatic way to set the board orienta-
tion than flipped.

• Added chess.svg.Arrow.pgn() and chess.svg.Arrow.from_pgn().

Changes:

• Further relaxed chess.Board.parse_san(). Now accepts fully specified moves like e2e4, even if that is
not a pawn move, castling notation with zeros, null moves in UCI notation, and null moves in XBoard notation.

8.9.16 New in v1.0.1

Bugfixes:

• chess.svg: Restored SVG Tiny compatibility by splitting colors like #rrggbbaa into a solid color and
opacity.

8.9.17 New in v1.0.0

See CHANGELOG-OLD.rst for changes up to v1.0.0.

70 Chapter 8. Contents

CHAPTER

NINE

INDICES AND TABLES

• genindex

• search

71

python-chess, Release 1.9.0

72 Chapter 9. Indices and tables

INDEX

A
accept() (chess.pgn.Game method), 40
accept() (chess.pgn.GameNode method), 39
accept_subgame() (chess.pgn.GameNode method),

39
add() (chess.SquareSet method), 34
add() (chess.variant.CrazyhousePocket method), 64
add_directory() (chess.gaviota.PythonTablebase

method), 46
add_directory() (chess.syzygy.Tablebase method),

47
add_line() (chess.pgn.GameNode method), 39
add_main_variation() (chess.pgn.GameNode

method), 38
add_variation() (chess.pgn.GameNode method),

38
analyse() (chess.engine.Protocol method), 52
analysis() (chess.engine.Protocol method), 56
AnalysisComplete (class in chess.engine), 60
AnalysisResult (class in chess.engine), 57
Arrow (class in chess.svg), 63
arrows() (chess.pgn.GameNode method), 39
attackers() (chess.BaseBoard method), 30
attacks() (chess.BaseBoard method), 30

B
BaseBoard (class in chess), 29
BaseVisitor (class in chess.pgn), 40
begin_game() (chess.pgn.BaseVisitor method), 40
begin_headers() (chess.pgn.BaseVisitor method),

41
begin_variation() (chess.pgn.BaseVisitor

method), 41
BestMove (class in chess.engine), 57
between() (chess.SquareSet class method), 35
black() (chess.engine.PovScore method), 53
black() (chess.engine.PovWdl method), 55
black_clock (chess.engine.Limit attribute), 51
black_inc (chess.engine.Limit attribute), 51
Board (class in chess), 21
board() (chess.pgn.GameNode method), 37
board() (in module chess.svg), 62

board_fen() (chess.BaseBoard method), 31
BoardBuilder (class in chess.pgn), 42

C
can_claim_draw() (chess.Board method), 24
can_claim_fifty_moves() (chess.Board method),

24
can_claim_threefold_repetition()

(chess.Board method), 24
carry_rippler() (chess.SquareSet method), 34
castling_rights (chess.Board attribute), 22
checkers() (chess.Board method), 23
CHECKMATE (chess.Termination attribute), 32
chess.A1 (built-in variable), 19
chess.B1 (built-in variable), 19
chess.BB_ALL (built-in variable), 35
chess.BB_BACKRANKS (built-in variable), 35
chess.BB_CENTER (built-in variable), 35
chess.BB_CORNERS (built-in variable), 35
chess.BB_DARK_SQUARES (built-in variable), 35
chess.BB_EMPTY (built-in variable), 35
chess.BB_FILES (built-in variable), 35
chess.BB_LIGHT_SQUARES (built-in variable), 35
chess.BB_RANKS (built-in variable), 35
chess.BB_SQUARES (built-in variable), 35
chess.BISHOP (built-in variable), 19
chess.BLACK (built-in variable), 19
chess.FILE_NAMES (built-in variable), 19
chess.G8 (built-in variable), 19
chess.H8 (built-in variable), 19
chess.KING (built-in variable), 19
chess.KNIGHT (built-in variable), 19
chess.PAWN (built-in variable), 19
chess.polyglot.POLYGLOT_RANDOM_ARRAY

(built-in variable), 45
chess.QUEEN (built-in variable), 19
chess.RANK_NAMES (built-in variable), 20
chess.ROOK (built-in variable), 19
chess.SQUARE_NAMES (built-in variable), 19
chess.SQUARES (built-in variable), 19
chess.WHITE (built-in variable), 19
chess960 (chess.Board attribute), 22

73

python-chess, Release 1.9.0

chess960_pos() (chess.BaseBoard method), 31
chess960_pos() (chess.Board method), 26
ChildNode (class in chess.pgn), 40
choice() (chess.polyglot.MemoryMappedReader

method), 45
clean_castling_rights() (chess.Board method),

28
clear() (chess.Board method), 23
clear() (chess.SquareSet method), 34
clear_board() (chess.BaseBoard method), 29
clear_board() (chess.Board method), 23
clear_stack() (chess.Board method), 23
clock() (chess.pgn.GameNode method), 39
close() (chess.engine.SimpleEngine method), 61
close() (chess.gaviota.PythonTablebase method), 46
close() (chess.polyglot.MemoryMappedReader

method), 45
close() (chess.syzygy.Tablebase method), 49
color (chess.Piece attribute), 20
color (chess.svg.Arrow attribute), 63
color_at() (chess.BaseBoard method), 30
comment (chess.pgn.GameNode attribute), 37
configure() (chess.engine.Protocol method), 58
copy() (chess.BaseBoard method), 31
copy() (chess.Board method), 29
copy() (chess.variant.CrazyhousePocket method), 64
count() (chess.variant.CrazyhousePocket method), 64
CrazyhouseBoard (class in chess.variant), 64
CrazyhousePocket (class in chess.variant), 64

D
default (chess.engine.Option attribute), 59
demote() (chess.pgn.GameNode method), 38
depth (chess.engine.Limit attribute), 51
discard() (chess.SquareSet method), 34
draw_offered (chess.engine.PlayResult attribute), 51
drawing_chance() (chess.engine.Wdl method), 55
draws (chess.engine.Wdl attribute), 55
drop (chess.Move attribute), 21

E
empty() (chess.BaseBoard class method), 31
empty() (chess.Board class method), 29
empty() (chess.engine.AnalysisResult method), 57
emt() (chess.pgn.GameNode method), 39
end() (chess.pgn.ChildNode method), 40
end() (chess.pgn.GameNode method), 38
end_game() (chess.pgn.BaseVisitor method), 41
end_headers() (chess.pgn.BaseVisitor method), 41
end_variation() (chess.pgn.BaseVisitor method),

41
EngineError (class in chess.engine), 60
EngineTerminatedError (class in chess.engine),

60

Entry (class in chess.polyglot), 44
ep_square (chess.Board attribute), 22
epd() (chess.Board method), 26
errors (chess.pgn.Game attribute), 40
eval() (chess.pgn.GameNode method), 39
eval_depth() (chess.pgn.GameNode method), 39
EventLoopPolicy() (in module chess.engine), 61
expectation() (chess.engine.Wdl method), 56

F
fen() (chess.Board method), 26
FIFTY_MOVES (chess.Termination attribute), 32
FileExporter (class in chess.pgn), 42
find() (chess.polyglot.MemoryMappedReader

method), 45
find_all() (chess.polyglot.MemoryMappedReader

method), 45
find_move() (chess.Board method), 25
find_variant() (in module chess.variant), 64
FIVEFOLD_REPETITION (chess.Termination at-

tribute), 32
from_board() (chess.pgn.Game class method), 40
from_chess960_pos() (chess.BaseBoard class

method), 31
from_chess960_pos() (chess.Board class method),

29
from_epd() (chess.Board class method), 29
from_pgn() (chess.svg.Arrow class method), 63
from_square (chess.Move attribute), 20
from_square() (chess.SquareSet class method), 35
from_symbol() (chess.Piece class method), 20
from_uci() (chess.Move class method), 21
fullmove_number (chess.Board attribute), 22

G
Game (class in chess.pgn), 39
game() (chess.pgn.GameNode method), 38
GameBuilder (class in chess.pgn), 41
GameNode (class in chess.pgn), 37
get() (chess.engine.AnalysisResult method), 57
gives_check() (chess.Board method), 23

H
halfmove_clock (chess.Board attribute), 22
handle_error() (chess.pgn.BaseVisitor method), 41
handle_error() (chess.pgn.GameBuilder method),

41
has_castling_rights() (chess.Board method), 28
has_chess960_castling_rights()

(chess.Board method), 28
has_insufficient_material() (chess.Board

method), 24
has_kingside_castling_rights()

(chess.Board method), 28

74 Index

python-chess, Release 1.9.0

has_legal_en_passant() (chess.Board method),
25

has_pseudo_legal_en_passant() (chess.Board
method), 25

has_queenside_castling_rights()
(chess.Board method), 28

has_variation() (chess.pgn.GameNode method),
38

head (chess.svg.Arrow attribute), 63
headers (chess.pgn.Game attribute), 39
HeadersBuilder (class in chess.pgn), 42

I
id (chess.engine.Protocol attribute), 60
info (chess.engine.PlayResult attribute), 51
info() (chess.engine.AnalysisResult property), 57
InfoDict (class in chess.engine), 53
initialize() (chess.engine.Protocol method), 61
INSUFFICIENT_MATERIAL (chess.Termination at-

tribute), 32
is_attacked_by() (chess.BaseBoard method), 30
is_capture() (chess.Board method), 28
is_castling() (chess.Board method), 28
is_check() (chess.Board method), 23
is_checkmate() (chess.Board method), 24
is_en_passant() (chess.Board method), 28
is_end() (chess.pgn.GameNode method), 38
is_fifty_moves() (chess.Board method), 24
is_fivefold_repetition() (chess.Board

method), 24
is_insufficient_material() (chess.Board

method), 24
is_irreversible() (chess.Board method), 28
is_kingside_castling() (chess.Board method),

28
is_main_variation() (chess.pgn.GameNode

method), 38
is_mainline() (chess.pgn.GameNode method), 38
is_managed() (chess.engine.Option method), 59
is_mate() (chess.engine.PovScore method), 53
is_mate() (chess.engine.Score method), 54
is_pinned() (chess.BaseBoard method), 30
is_queenside_castling() (chess.Board method),

28
is_repetition() (chess.Board method), 25
is_seventyfive_moves() (chess.Board method),

24
is_stalemate() (chess.Board method), 24
is_valid() (chess.Board method), 29
is_variant_draw() (chess.Board method), 24
is_variant_end() (chess.Board method), 23
is_variant_loss() (chess.Board method), 23
is_variant_win() (chess.Board method), 24
is_zeroing() (chess.Board method), 28

isdisjoint() (chess.SquareSet method), 34
issubset() (chess.SquareSet method), 34
issuperset() (chess.SquareSet method), 34

K
key (chess.polyglot.Entry attribute), 44
king() (chess.BaseBoard method), 30

L
lan() (chess.Board method), 27
learn (chess.polyglot.Entry attribute), 44
legal_drop_squares()

(chess.variant.CrazyhouseBoard method),
65

legal_moves() (chess.Board property), 22
Limit (class in chess.engine), 50
losing_chance() (chess.engine.Wdl method), 55
losses (chess.engine.Wdl attribute), 55

M
mainline() (chess.pgn.GameNode method), 38
mainline_moves() (chess.pgn.GameNode method),

38
mate (chess.engine.Limit attribute), 51
mate() (chess.engine.Score method), 54
max (chess.engine.Option attribute), 59
MemoryMappedReader (class in chess.polyglot), 44
min (chess.engine.Option attribute), 59
mirror() (chess.BaseBoard method), 31
mirror() (chess.Board method), 29
mirror() (chess.SquareSet method), 34
move (chess.engine.BestMove attribute), 57
move (chess.engine.PlayResult attribute), 51
move (chess.pgn.ChildNode attribute), 40
move (chess.pgn.GameNode attribute), 37
move (chess.polyglot.Entry attribute), 44
Move (class in chess), 20
move_stack (chess.Board attribute), 22
multipv (chess.engine.AnalysisResult attribute), 57

N
NAG_BLUNDER (in module chess.pgn), 43
NAG_BRILLIANT_MOVE (in module chess.pgn), 43
NAG_DUBIOUS_MOVE (in module chess.pgn), 43
NAG_GOOD_MOVE (in module chess.pgn), 43
NAG_MISTAKE (in module chess.pgn), 43
NAG_SPECULATIVE_MOVE (in module chess.pgn), 43
nags (chess.pgn.ChildNode attribute), 40
name (chess.engine.Option attribute), 58
NativeTablebase (class in chess.gaviota), 47
next() (chess.pgn.GameNode method), 38
nodes (chess.engine.Limit attribute), 51
null() (chess.Move class method), 21

Index 75

python-chess, Release 1.9.0

O
open_reader() (in module chess.polyglot), 44
open_tablebase() (in module chess.gaviota), 45
open_tablebase() (in module chess.syzygy), 47
open_tablebase_native() (in module

chess.gaviota), 47
Option (class in chess.engine), 58
options (chess.engine.Protocol attribute), 58
Outcome (class in chess), 32
outcome() (chess.Board method), 24

P
parent (chess.pgn.ChildNode attribute), 40
parent (chess.pgn.GameNode attribute), 37
parse_san() (chess.Board method), 27
parse_san() (chess.pgn.BaseVisitor method), 41
parse_square() (in module chess), 20
parse_uci() (chess.Board method), 27
peek() (chess.Board method), 25
pgn() (chess.svg.Arrow method), 63
Piece (class in chess), 20
piece() (in module chess.svg), 62
piece_at() (chess.BaseBoard method), 30
piece_map() (chess.BaseBoard method), 31
piece_name() (in module chess), 19
piece_symbol() (in module chess), 19
piece_type (chess.Piece attribute), 20
piece_type_at() (chess.BaseBoard method), 30
pieces() (chess.BaseBoard method), 29
pin() (chess.BaseBoard method), 30
ping() (chess.engine.Protocol method), 61
play() (chess.engine.Protocol method), 50
PlayResult (class in chess.engine), 51
ply() (chess.Board method), 23
ply() (chess.pgn.GameNode method), 37
pockets (chess.variant.CrazyhouseBoard attribute), 65
ponder (chess.engine.BestMove attribute), 57
ponder (chess.engine.PlayResult attribute), 51
pop() (chess.Board method), 25
pop() (chess.SquareSet method), 34
popen_uci() (chess.engine.SimpleEngine class

method), 61
popen_uci() (in module chess.engine), 60
popen_xboard() (chess.engine.SimpleEngine class

method), 61
popen_xboard() (in module chess.engine), 60
pov() (chess.engine.PovScore method), 53
pov() (chess.engine.PovWdl method), 55
PovScore (class in chess.engine), 53
PovWdl (class in chess.engine), 55
probe_dtm() (chess.gaviota.PythonTablebase

method), 46
probe_dtz() (chess.syzygy.Tablebase method), 48

probe_wdl() (chess.gaviota.PythonTablebase
method), 46

probe_wdl() (chess.syzygy.Tablebase method), 48
promote() (chess.pgn.GameNode method), 38
promote_to_main() (chess.pgn.GameNode

method), 38
promoted (chess.Board attribute), 22
promotion (chess.Move attribute), 20
Protocol (class in chess.engine), 50, 52, 56, 58, 60
pseudo_legal_moves() (chess.Board property), 22
push() (chess.Board method), 25
push_san() (chess.Board method), 27
push_uci() (chess.Board method), 28
push_xboard() (chess.Board method), 28
PythonTablebase (class in chess.gaviota), 46

Q
quit() (chess.engine.Protocol method), 61

R
raw_move (chess.polyglot.Entry attribute), 44
ray() (chess.SquareSet class method), 34
read_game() (in module chess.pgn), 36
read_headers() (in module chess.pgn), 43
relative (chess.engine.PovScore attribute), 53
relative (chess.engine.PovWdl attribute), 55
remaining_checks (chess.variant.ThreeCheckBoard

attribute), 65
remaining_moves (chess.engine.Limit attribute), 51
remove() (chess.SquareSet method), 34
remove() (chess.variant.CrazyhousePocket method),

64
remove_piece_at() (chess.BaseBoard method), 31
remove_piece_at() (chess.Board method), 23
remove_variation() (chess.pgn.GameNode

method), 38
reset() (chess.Board method), 23
reset() (chess.variant.CrazyhousePocket method), 64
reset_board() (chess.BaseBoard method), 29
reset_board() (chess.Board method), 23
resigned (chess.engine.PlayResult attribute), 51
result() (chess.Outcome method), 32
result() (chess.pgn.BaseVisitor method), 41
result() (chess.pgn.GameBuilder method), 42
returncode (chess.engine.Protocol attribute), 60
root() (chess.Board method), 23

S
san() (chess.Board method), 27
san() (chess.pgn.ChildNode method), 40
Score (class in chess.engine), 53
score() (chess.engine.Score method), 54
set_arrows() (chess.pgn.GameNode method), 39
set_board_fen() (chess.BaseBoard method), 31

76 Index

python-chess, Release 1.9.0

set_board_fen() (chess.Board method), 26
set_castling_fen() (chess.Board method), 26
set_chess960_pos() (chess.BaseBoard method),

31
set_chess960_pos() (chess.Board method), 26
set_clock() (chess.pgn.GameNode method), 39
set_emt() (chess.pgn.GameNode method), 39
set_epd() (chess.Board method), 27
set_eval() (chess.pgn.GameNode method), 39
set_fen() (chess.Board method), 26
set_piece_at() (chess.BaseBoard method), 31
set_piece_at() (chess.Board method), 23
set_piece_map() (chess.BaseBoard method), 31
set_piece_map() (chess.Board method), 26
setup() (chess.pgn.Game method), 40
SEVENTYFIVE_MOVES (chess.Termination attribute),

32
SimpleAnalysisResult (class in chess.engine), 61
SimpleEngine (class in chess.engine), 61
skip_game() (in module chess.pgn), 44
SkipVisitor (class in chess.pgn), 42
square() (in module chess), 20
square_distance() (in module chess), 20
square_file() (in module chess), 20
square_mirror() (in module chess), 20
square_name() (in module chess), 20
square_rank() (in module chess), 20
SquareSet (class in chess), 33
STALEMATE (chess.Termination attribute), 32
STARTING_BOARD_FEN (in module chess), 21
starting_comment (chess.pgn.ChildNode attribute),

40
STARTING_FEN (in module chess), 21
starts_variation() (chess.pgn.GameNode

method), 38
status() (chess.Board method), 28
stop() (chess.engine.AnalysisResult method), 57
StringExporter (class in chess.pgn), 42
symbol() (chess.Piece method), 20

T
Tablebase (class in chess.syzygy), 47
tail (chess.svg.Arrow attribute), 63
termination (chess.Outcome attribute), 32
Termination (class in chess), 32
ThreeCheckBoard (class in chess.variant), 65
THREEFOLD_REPETITION (chess.Termination at-

tribute), 32
time (chess.engine.Limit attribute), 51
to_square (chess.Move attribute), 20
tolist() (chess.SquareSet method), 34
total() (chess.engine.Wdl method), 55
transform() (chess.BaseBoard method), 31
transform() (chess.Board method), 29

turn (chess.Board attribute), 21
turn (chess.engine.PovScore attribute), 53
turn (chess.engine.PovWdl attribute), 55
turn() (chess.pgn.GameNode method), 38
type (chess.engine.Option attribute), 58

U
uci() (chess.Board method), 27
uci() (chess.Move method), 21
uci() (chess.pgn.ChildNode method), 40
UciProtocol (class in chess.engine), 61
unicode() (chess.BaseBoard method), 31
unicode_symbol() (chess.Piece method), 20

V
var (chess.engine.Option attribute), 59
VARIANT_DRAW (chess.Termination attribute), 32
VARIANT_LOSS (chess.Termination attribute), 32
VARIANT_WIN (chess.Termination attribute), 32
variation() (chess.pgn.GameNode method), 38
variation_san() (chess.Board method), 27
variations (chess.pgn.GameNode attribute), 37
visit_board() (chess.pgn.BaseVisitor method), 41
visit_comment() (chess.pgn.BaseVisitor method),

41
visit_header() (chess.pgn.BaseVisitor method), 41
visit_move() (chess.pgn.BaseVisitor method), 41
visit_nag() (chess.pgn.BaseVisitor method), 41
visit_result() (chess.pgn.BaseVisitor method), 41

W
wait() (chess.engine.AnalysisResult method), 57
Wdl (class in chess.engine), 55
wdl() (chess.engine.PovScore method), 53
wdl() (chess.engine.Score method), 54
weight (chess.polyglot.Entry attribute), 44
weighted_choice()

(chess.polyglot.MemoryMappedReader
method), 45

white() (chess.engine.PovScore method), 53
white() (chess.engine.PovWdl method), 55
white_clock (chess.engine.Limit attribute), 51
white_inc (chess.engine.Limit attribute), 51
winner (chess.Outcome attribute), 32
winning_chance() (chess.engine.Wdl method), 55
wins (chess.engine.Wdl attribute), 55
without_tag_roster() (chess.pgn.Game class

method), 40

X
XBoardProtocol (class in chess.engine), 61

Z
zobrist_hash() (in module chess.polyglot), 45

Index 77

	Introduction
	Installing
	Documentation
	Features
	Selected projects
	Acknowledgements
	License
	Contents
	Core
	PGN parsing and writing
	Polyglot opening book reading
	Gaviota endgame tablebase probing
	Syzygy endgame tablebase probing
	UCI/XBoard engine communication
	SVG rendering
	Variants
	Changelog for python-chess

	Indices and tables
	Index

