

python-chess: a chess library for Python

[image: Test status]
 [https://github.com/niklasf/python-chess/actions][image: PyPI package]
 [https://pypi.python.org/pypi/chess][image: Docs]
 [https://python-chess.readthedocs.io/en/latest/][image: Chat on Gitter]
 [https://gitter.im/python-chess/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge]
Introduction

python-chess is a chess library for Python, with move generation,
move validation, and support for common formats. This is the Scholar’s mate in
python-chess:

>>> import chess

>>> board = chess.Board()

>>> board.legal_moves
<LegalMoveGenerator at ... (Nh3, Nf3, Nc3, Na3, h3, g3, f3, e3, d3, c3, ...)>
>>> chess.Move.from_uci("a8a1") in board.legal_moves
False

>>> board.push_san("e4")
Move.from_uci('e2e4')
>>> board.push_san("e5")
Move.from_uci('e7e5')
>>> board.push_san("Qh5")
Move.from_uci('d1h5')
>>> board.push_san("Nc6")
Move.from_uci('b8c6')
>>> board.push_san("Bc4")
Move.from_uci('f1c4')
>>> board.push_san("Nf6")
Move.from_uci('g8f6')
>>> board.push_san("Qxf7")
Move.from_uci('h5f7')

>>> board.is_checkmate()
True

>>> board
Board('r1bqkb1r/pppp1Qpp/2n2n2/4p3/2B1P3/8/PPPP1PPP/RNB1K1NR b KQkq - 0 4')

Installing

Download and install the latest release:

pip install chess

Documentation [https://python-chess.readthedocs.io/en/latest/]

	Core [https://python-chess.readthedocs.io/en/latest/core.html]

	PGN parsing and writing [https://python-chess.readthedocs.io/en/latest/pgn.html]

	Polyglot opening book reading [https://python-chess.readthedocs.io/en/latest/polyglot.html]

	Gaviota endgame tablebase probing [https://python-chess.readthedocs.io/en/latest/gaviota.html]

	Syzygy endgame tablebase probing [https://python-chess.readthedocs.io/en/latest/syzygy.html]

	UCI/XBoard engine communication [https://python-chess.readthedocs.io/en/latest/engine.html]

	Variants [https://python-chess.readthedocs.io/en/latest/variant.html]

	Changelog [https://python-chess.readthedocs.io/en/latest/changelog.html]

Features

	Supports Python 3.7+. Includes mypy typings.

	IPython/Jupyter Notebook integration.
SVG rendering docs [https://python-chess.readthedocs.io/en/latest/svg.html].

>>> board

[image: r1bqkb1r/pppp1Qpp/2n2n2/4p3/2B1P3/8/PPPP1PPP/RNB1K1NR]

	Chess variants: Standard, Chess960, Suicide, Giveaway, Atomic,
King of the Hill, Racing Kings, Horde, Three-check, Crazyhouse.
Variant docs [https://python-chess.readthedocs.io/en/latest/variant.html].

	Make and unmake moves.

>>> Nf3 = chess.Move.from_uci("g1f3")
>>> board.push(Nf3) # Make the move

>>> board.pop() # Unmake the last move
Move.from_uci('g1f3')

	Show a simple ASCII board.

>>> board = chess.Board("r1bqkb1r/pppp1Qpp/2n2n2/4p3/2B1P3/8/PPPP1PPP/RNB1K1NR b KQkq - 0 4")
>>> print(board)
r . b q k b . r
p p p p . Q p p
. . n . . n . .
. . . . p . . .
. . B . P . . .
.
P P P P . P P P
R N B . K . N R

	Detects checkmates, stalemates and draws by insufficient material.

>>> board.is_stalemate()
False
>>> board.is_insufficient_material()
False
>>> board.outcome()
Outcome(termination=<Termination.CHECKMATE: 1>, winner=True)

	Detects repetitions. Has a half-move clock.

>>> board.can_claim_threefold_repetition()
False
>>> board.halfmove_clock
0
>>> board.can_claim_fifty_moves()
False
>>> board.can_claim_draw()
False

With the new rules from July 2014, a game ends as a draw (even without a
claim) once a fivefold repetition occurs or if there are 75 moves without
a pawn push or capture. Other ways of ending a game take precedence.

>>> board.is_fivefold_repetition()
False
>>> board.is_seventyfive_moves()
False

	Detects checks and attacks.

>>> board.is_check()
True
>>> board.is_attacked_by(chess.WHITE, chess.E8)
True

>>> attackers = board.attackers(chess.WHITE, chess.F3)
>>> attackers
SquareSet(0x0000_0000_0000_4040)
>>> chess.G2 in attackers
True
>>> print(attackers)
.
.
.
.
.
.
. 1 .
. 1 .

	Parses and creates SAN representation of moves.

>>> board = chess.Board()
>>> board.san(chess.Move(chess.E2, chess.E4))
'e4'
>>> board.parse_san('Nf3')
Move.from_uci('g1f3')
>>> board.variation_san([chess.Move.from_uci(m) for m in ["e2e4", "e7e5", "g1f3"]])
'1. e4 e5 2. Nf3'

	Parses and creates FENs, extended FENs and Shredder FENs.

>>> board.fen()
'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1'
>>> board.shredder_fen()
'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w HAha - 0 1'
>>> board = chess.Board("8/8/8/2k5/4K3/8/8/8 w - - 4 45")
>>> board.piece_at(chess.C5)
Piece.from_symbol('k')

	Parses and creates EPDs.

>>> board = chess.Board()
>>> board.epd(bm=board.parse_uci("d2d4"))
'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - bm d4;'

>>> ops = board.set_epd("1k1r4/pp1b1R2/3q2pp/4p3/2B5/4Q3/PPP2B2/2K5 b - - bm Qd1+; id \"BK.01\";")
>>> ops == {'bm': [chess.Move.from_uci('d6d1')], 'id': 'BK.01'}
True

	Detects absolute pins and their directions [https://python-chess.readthedocs.io/en/latest/core.html#chess.Board.pin].

	Reads Polyglot opening books.
Docs [https://python-chess.readthedocs.io/en/latest/polyglot.html].

>>> import chess.polyglot

>>> book = chess.polyglot.open_reader("data/polyglot/performance.bin")

>>> board = chess.Board()
>>> main_entry = book.find(board)
>>> main_entry.move
Move.from_uci('e2e4')
>>> main_entry.weight
1

>>> book.close()

	Reads and writes PGNs. Supports headers, comments, NAGs and a tree of
variations.
Docs [https://python-chess.readthedocs.io/en/latest/pgn.html].

>>> import chess.pgn

>>> with open("data/pgn/molinari-bordais-1979.pgn") as pgn:
... first_game = chess.pgn.read_game(pgn)

>>> first_game.headers["White"]
'Molinari'
>>> first_game.headers["Black"]
'Bordais'

>>> first_game.mainline()
<Mainline at ... (1. e4 c5 2. c4 Nc6 3. Ne2 Nf6 4. Nbc3 Nb4 5. g3 Nd3#)>

>>> first_game.headers["Result"]
'0-1'

	Probe Gaviota endgame tablebases (DTM, WDL).
Docs [https://python-chess.readthedocs.io/en/latest/gaviota.html].

	Probe Syzygy endgame tablebases (DTZ, WDL).
Docs [https://python-chess.readthedocs.io/en/latest/syzygy.html].

>>> import chess.syzygy

>>> tablebase = chess.syzygy.open_tablebase("data/syzygy/regular")

>>> # Black to move is losing in 53 half moves (distance to zero) in this
>>> # KNBvK endgame.
>>> board = chess.Board("8/2K5/4B3/3N4/8/8/4k3/8 b - - 0 1")
>>> tablebase.probe_dtz(board)
-53

>>> tablebase.close()

	Communicate with UCI/XBoard engines. Based on asyncio.
Docs [https://python-chess.readthedocs.io/en/latest/engine.html].

>>> import chess.engine

>>> engine = chess.engine.SimpleEngine.popen_uci("stockfish")

>>> board = chess.Board("1k1r4/pp1b1R2/3q2pp/4p3/2B5/4Q3/PPP2B2/2K5 b - - 0 1")
>>> limit = chess.engine.Limit(time=2.0)
>>> engine.play(board, limit)
<PlayResult at ... (move=d6d1, ponder=c1d1, info={...}, draw_offered=False, resigned=False)>

>>> engine.quit()

Selected projects

If you like, share interesting things you are using python-chess for, for example:

	[image: _images/syzygy.png]
 [https://syzygy-tables.info/]
	https://syzygy-tables.info/

A website to probe Syzygy endgame tablebases

	[image: _images/maia.png]
 [https://maiachess.com/]
	https://maiachess.com/

A human-like neural network chess engine

	[image: _images/clente-chess.png]
 [https://github.com/clente/chess]
	clente/chess [https://github.com/clente/chess]

Oppinionated wrapper to use python-chess from the R programming language

	[image: _images/crazyara.png]
 [https://crazyara.org/]
	https://crazyara.org/

Deep learning for Crazyhouse

	[image: _images/jcchess.png]
 [http://johncheetham.com/projects/jcchess/]
	http://johncheetham.com [http://johncheetham.com/projects/jcchess/]

A GUI to play against UCI chess engines

	[image: _images/pettingzoo.png]
 [https://www.pettingzoo.ml/classic/chess]
	https://www.pettingzoo.ml [https://www.pettingzoo.ml/classic/chess]

A multi-agent reinforcement learning environment

	a stand-alone chess computer based on DGT board – http://www.picochess.org/

	a bridge between Lichess API and chess engines – https://github.com/careless25/lichess-bot

	a command-line PGN annotator – https://github.com/rpdelaney/python-chess-annotator

	an HTTP microservice to render board images – https://github.com/niklasf/web-boardimage

	building a toy chess engine with alpha-beta pruning, piece-square tables, and move ordering – https://healeycodes.com/building-my-own-chess-engine/

	a JIT compiled chess engine – https://github.com/SamRagusa/Batch-First

	teaching Cognitive Science – https://jupyter.brynmawr.edu [https://jupyter.brynmawr.edu/services/public/dblank/CS371%20Cognitive%20Science/2016-Fall/Programming%20a%20Chess%20Player.ipynb]

	an Alexa skill to play blindfold chess [https://www.amazon.com/Laynr-blindfold-chess/dp/B0859QF8YL] – https://github.com/laynr/blindfold-chess

	a chessboard widget for PySide2 – https://github.com/H-a-y-k/hichesslib

	Django Rest Framework API for multiplayer chess – https://github.com/WorkShoft/capablanca-api

Acknowledgements

Thanks to the Stockfish authors and thanks to Sam Tannous for publishing his
approach to avoid rotated bitboards with direct lookup (PDF) [http://arxiv.org/pdf/0704.3773.pdf]
alongside his GPL2+ engine Shatranj [https://github.com/stannous/shatranj].
Some move generation ideas are taken from these sources.

Thanks to Ronald de Man for his
Syzygy endgame tablebases [https://github.com/syzygy1/tb].
The probing code in python-chess is very directly ported from his C probing code.

Thanks to Kristian Glass [https://github.com/doismellburning] for
transferring the namespace chess on PyPI.

License

python-chess is licensed under the GPL 3 (or any later version at your option).
Check out LICENSE.txt for the full text.

Contents

	Core
	Colors

	Piece types

	Squares

	Pieces

	Moves

	Board

	Outcome

	Square sets

	PGN parsing and writing
	Parsing

	Writing

	Game model

	Visitors

	NAGs

	Skimming

	Polyglot opening book reading

	Gaviota endgame tablebase probing
	libgtb

	Syzygy endgame tablebase probing

	UCI/XBoard engine communication
	Playing

	Analysing and evaluating a position

	Indefinite or infinite analysis

	Options

	Logging

	AsyncSSH

	Reference

	SVG rendering

	Variants
	Game end

	Chess960

	Crazyhouse

	Three-check

	UCI/XBoard

	Syzygy

	Changelog for python-chess

Indices and tables

	Index

	Search Page

Core

Colors

Constants for the side to move or the color of a piece.

	
chess.WHITE: chess.Color = True

	

	
chess.BLACK: chess.Color = False

	

You can get the opposite color using not color.

Piece types

	
chess.PAWN: chess.PieceType = 1

	

	
chess.KNIGHT: chess.PieceType = 2

	

	
chess.BISHOP: chess.PieceType = 3

	

	
chess.ROOK: chess.PieceType = 4

	

	
chess.QUEEN: chess.PieceType = 5

	

	
chess.KING: chess.PieceType = 6

	

	
chess.piece_symbol(piece_type: chess.PieceType) → str

	

	
chess.piece_name(piece_type: chess.PieceType) → str

	

Squares

	
chess.A1: chess.Square = 0

	

	
chess.B1: chess.Square = 1

	

and so on to

	
chess.G8: chess.Square = 62

	

	
chess.H8: chess.Square = 63

	

	
chess.SQUARES = [chess.A1, chess.B1, ..., chess.G8, chess.H8]

	

	
chess.SQUARE_NAMES = ['a1', 'b1', ..., 'g8', 'h8']

	

	
chess.FILE_NAMES = ['a', 'b', ..., 'g', 'h']

	

	
chess.RANK_NAMES = ['1', '2', ..., '7', '8']

	

	
chess.parse_square(name: str) → chess.Square

	Gets the square index for the given square name
(e.g., a1 returns 0).

	Raises

	ValueError if the square name is invalid.

	
chess.square_name(square: chess.Square) → str

	Gets the name of the square, like a3.

	
chess.square(file_index: int, rank_index: int) → chess.Square

	Gets a square number by file and rank index.

	
chess.square_file(square: chess.Square) → int

	Gets the file index of the square where 0 is the a-file.

	
chess.square_rank(square: chess.Square) → int

	Gets the rank index of the square where 0 is the first rank.

	
chess.square_distance(a: chess.Square, b: chess.Square) → int

	Gets the distance (i.e., the number of king steps) from square a to b.

	
chess.square_mirror(square: chess.Square) → chess.Square

	Mirrors the square vertically.

Pieces

	
class chess.Piece(piece_type: chess.PieceType, color: chess.Color)

	A piece with type and color.

	
piece_type: chess.PieceType

	The piece type.

	
color: chess.Color

	The piece color.

	
symbol() → str

	Gets the symbol P, N, B, R, Q or K for white
pieces or the lower-case variants for the black pieces.

	
unicode_symbol(*, invert_color: bool = False) → str

	Gets the Unicode character for the piece.

	
classmethod from_symbol(symbol: str) → chess.Piece

	Creates a Piece instance from a piece symbol.

	Raises

	ValueError if the symbol is invalid.

Moves

	
class chess.Move(from_square: chess.Square, to_square: chess.Square, promotion: Optional[chess.PieceType] = None, drop: Optional[chess.PieceType] = None)

	Represents a move from a square to a square and possibly the promotion
piece type.

Drops and null moves are supported.

	
from_square: chess.Square

	The source square.

	
to_square: chess.Square

	The target square.

	
promotion: Optional[chess.PieceType] = None

	The promotion piece type or None.

	
drop: Optional[chess.PieceType] = None

	The drop piece type or None.

	
uci() → str

	Gets a UCI string for the move.

For example, a move from a7 to a8 would be a7a8 or a7a8q
(if the latter is a promotion to a queen).

The UCI representation of a null move is 0000.

	
classmethod from_uci(uci: str) → chess.Move

	Parses a UCI string.

	Raises

	ValueError if the UCI string is invalid.

	
classmethod null() → chess.Move

	Gets a null move.

A null move just passes the turn to the other side (and possibly
forfeits en passant capturing). Null moves evaluate to False in
boolean contexts.

>>> import chess
>>>
>>> bool(chess.Move.null())
False

Board

	
chess.STARTING_FEN = 'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1'

	The FEN for the standard chess starting position.

	
chess.STARTING_BOARD_FEN = 'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR'

	The board part of the FEN for the standard chess starting position.

	
class chess.Board(fen: Optional[str] = 'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1', *, chess960: bool = False)

	A BaseBoard, additional information representing
a chess position, and a move stack.

Provides move generation, validation,
parsing, attack generation,
game end detection,
and the capability to make and
unmake moves.

The board is initialized to the standard chess starting position,
unless otherwise specified in the optional fen argument.
If fen is None, an empty board is created.

Optionally supports chess960. In Chess960, castling moves are encoded
by a king move to the corresponding rook square.
Use chess.Board.from_chess960_pos() to create a board with one
of the Chess960 starting positions.

It’s safe to set turn, castling_rights,
ep_square, halfmove_clock and
fullmove_number directly.

Warning

It is possible to set up and work with invalid positions. In this
case, Board implements a kind of “pseudo-chess”
(useful to gracefully handle errors or to implement chess variants).
Use is_valid() to detect invalid positions.

	
turn: chess.Color

	The side to move (chess.WHITE or chess.BLACK).

	
castling_rights: chess.Bitboard

	Bitmask of the rooks with castling rights.

To test for specific squares:

>>> import chess
>>>
>>> board = chess.Board()
>>> bool(board.castling_rights & chess.BB_H1) # White can castle with the h1 rook
True

To add a specific square:

>>> board.castling_rights |= chess.BB_A1

Use set_castling_fen() to set multiple castling
rights. Also see has_castling_rights(),
has_kingside_castling_rights(),
has_queenside_castling_rights(),
has_chess960_castling_rights(),
clean_castling_rights().

	
fullmove_number: int

	Counts move pairs. Starts at 1 and is incremented after every move
of the black side.

	
halfmove_clock: int

	The number of half-moves since the last capture or pawn move.

	
promoted: chess.Bitboard

	A bitmask of pieces that have been promoted.

	
chess960: bool

	Whether the board is in Chess960 mode. In Chess960 castling moves are
represented as king moves to the corresponding rook square.

	
ep_square: Optional[chess.Square]

	The potential en passant square on the third or sixth rank or None.

Use has_legal_en_passant() to test if en passant
capturing would actually be possible on the next move.

	
move_stack: List[chess.Move]

	The move stack. Use Board.push(),
Board.pop(),
Board.peek() and
Board.clear_stack() for
manipulation.

	
property legal_moves

	A dynamic list of legal moves.

>>> import chess
>>>
>>> board = chess.Board()
>>> board.legal_moves.count()
20
>>> bool(board.legal_moves)
True
>>> move = chess.Move.from_uci("g1f3")
>>> move in board.legal_moves
True

Wraps generate_legal_moves() and
is_legal().

	
property pseudo_legal_moves

	A dynamic list of pseudo-legal moves, much like the legal move list.

Pseudo-legal moves might leave or put the king in check, but are
otherwise valid. Null moves are not pseudo-legal. Castling moves are
only included if they are completely legal.

Wraps generate_pseudo_legal_moves() and
is_pseudo_legal().

	
reset() → None

	Restores the starting position.

	
reset_board() → None

	Resets only pieces to the starting position. Use
reset() to fully restore the starting position
(including turn, castling rights, etc.).

	
clear() → None

	Clears the board.

Resets move stack and move counters. The side to move is white. There
are no rooks or kings, so castling rights are removed.

In order to be in a valid status(), at least kings
need to be put on the board.

	
clear_board() → None

	Clears the board.

	
clear_stack() → None

	Clears the move stack.

	
root() → BoardT

	Returns a copy of the root position.

	
ply() → int

	Returns the number of half-moves since the start of the game, as
indicated by fullmove_number and
turn.

If moves have been pushed from the beginning, this is usually equal to
len(board.move_stack). But note that a board can be set up with
arbitrary starting positions, and the stack can be cleared.

	
remove_piece_at(square: chess.Square) → Optional[chess.Piece]

	Removes the piece from the given square. Returns the
Piece or None if the square was already empty.

	
set_piece_at(square: chess.Square, piece: Optional[chess.Piece], promoted: bool = False) → None

	Sets a piece at the given square.

An existing piece is replaced. Setting piece to None is
equivalent to remove_piece_at().

	
checkers() → chess.SquareSet

	Gets the pieces currently giving check.

Returns a set of squares.

	
is_check() → bool

	Tests if the current side to move is in check.

	
gives_check(move: chess.Move) → bool

	Probes if the given move would put the opponent in check. The move
must be at least pseudo-legal.

	
is_variant_end() → bool

	Checks if the game is over due to a special variant end condition.

Note, for example, that stalemate is not considered a variant-specific
end condition (this method will return False), yet it can have a
special result in suicide chess (any of
is_variant_loss(),
is_variant_win(),
is_variant_draw() might return True).

	
is_variant_loss() → bool

	Checks if the current side to move lost due to a variant-specific
condition.

	
is_variant_win() → bool

	Checks if the current side to move won due to a variant-specific
condition.

	
is_variant_draw() → bool

	Checks if a variant-specific drawing condition is fulfilled.

	
outcome(*, claim_draw: bool = False) → Optional[chess.Outcome]

	Checks if the game is over due to
checkmate,
stalemate,
insufficient material,
the seventyfive-move rule,
fivefold repetition,
or a variant end condition.
Returns the chess.Outcome if the game has ended, otherwise
None.

Alternatively, use is_game_over() if you are not
interested in who won the game and why.

The game is not considered to be over by the
fifty-move rule or
threefold repetition,
unless claim_draw is given. Note that checking the latter can be
slow.

	
is_checkmate() → bool

	Checks if the current position is a checkmate.

	
is_stalemate() → bool

	Checks if the current position is a stalemate.

	
is_insufficient_material() → bool

	Checks if neither side has sufficient winning material
(has_insufficient_material()).

	
has_insufficient_material(color: chess.Color) → bool

	Checks if color has insufficient winning material.

This is guaranteed to return False if color can still win the
game.

The converse does not necessarily hold:
The implementation only looks at the material, including the colors
of bishops, but not considering piece positions. So fortress
positions or positions with forced lines may return False, even
though there is no possible winning line.

	
is_seventyfive_moves() → bool

	Since the 1st of July 2014, a game is automatically drawn (without
a claim by one of the players) if the half-move clock since a capture
or pawn move is equal to or greater than 150. Other means to end a game
take precedence.

	
is_fivefold_repetition() → bool

	Since the 1st of July 2014 a game is automatically drawn (without
a claim by one of the players) if a position occurs for the fifth time.
Originally this had to occur on consecutive alternating moves, but
this has since been revised.

	
can_claim_draw() → bool

	Checks if the player to move can claim a draw by the fifty-move rule or
by threefold repetition.

Note that checking the latter can be slow.

	
is_fifty_moves() → bool

	Checks that the clock of halfmoves since the last capture or pawn move
is greater or equal to 100, and that no other means of ending the game
(like checkmate) take precedence.

	
can_claim_fifty_moves() → bool

	Checks if the player to move can claim a draw by the fifty-move rule.

In addition to is_fifty_moves(), the fifty-move
rule can also be claimed if there is a legal move that achieves this
condition.

	
can_claim_threefold_repetition() → bool

	Checks if the player to move can claim a draw by threefold repetition.

Draw by threefold repetition can be claimed if the position on the
board occurred for the third time or if such a repetition is reached
with one of the possible legal moves.

Note that checking this can be slow: In the worst case
scenario, every legal move has to be tested and the entire game has to
be replayed because there is no incremental transposition table.

	
is_repetition(count: int = 3) → bool

	Checks if the current position has repeated 3 (or a given number of)
times.

Unlike can_claim_threefold_repetition(),
this does not consider a repetition that can be played on the next
move.

Note that checking this can be slow: In the worst case, the entire
game has to be replayed because there is no incremental transposition
table.

	
push(move: chess.Move) → None

	Updates the position with the given move and puts it onto the
move stack.

>>> import chess
>>>
>>> board = chess.Board()
>>>
>>> Nf3 = chess.Move.from_uci("g1f3")
>>> board.push(Nf3) # Make the move

>>> board.pop() # Unmake the last move
Move.from_uci('g1f3')

Null moves just increment the move counters, switch turns and forfeit
en passant capturing.

Warning

Moves are not checked for legality. It is the caller’s
responsibility to ensure that the move is at least pseudo-legal or
a null move.

	
pop() → chess.Move

	Restores the previous position and returns the last move from the stack.

	Raises

	IndexError if the move stack is empty.

	
peek() → chess.Move

	Gets the last move from the move stack.

	Raises

	IndexError if the move stack is empty.

	
find_move(from_square: chess.Square, to_square: chess.Square, promotion: Optional[chess.PieceType] = None) → chess.Move

	Finds a matching legal move for an origin square, a target square, and
an optional promotion piece type.

For pawn moves to the backrank, the promotion piece type defaults to
chess.QUEEN, unless otherwise specified.

Castling moves are normalized to king moves by two steps, except in
Chess960.

	Raises

	ValueError if no matching legal move is found.

	
has_pseudo_legal_en_passant() → bool

	Checks if there is a pseudo-legal en passant capture.

	
has_legal_en_passant() → bool

	Checks if there is a legal en passant capture.

	
fen(*, shredder: bool = False, en_passant: Literal[legal, fen, xfen] = 'legal', promoted: Optional[bool] = None) → str

	Gets a FEN representation of the position.

A FEN string (e.g.,
rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1) consists
of the board part board_fen(), the
turn, the castling part
(castling_rights),
the en passant square (ep_square),
the halfmove_clock
and the fullmove_number.

	Parameters

	
	shredder – Use castling_shredder_fen()
and encode castling rights by the file of the rook
(like HAha) instead of the default
castling_xfen() (like KQkq).

	en_passant – By default, only fully legal en passant squares
are included (has_legal_en_passant()).
Pass fen to strictly follow the FEN specification
(always include the en passant square after a two-step pawn move)
or xfen to follow the X-FEN specification
(has_pseudo_legal_en_passant()).

	promoted – Mark promoted pieces like Q~. By default, this is
only enabled in chess variants where this is relevant.

	
set_fen(fen: str) → None

	Parses a FEN and sets the position from it.

	Raises

	ValueError if syntactically invalid. Use
is_valid() to detect invalid positions.

	
set_castling_fen(castling_fen: str) → None

	Sets castling rights from a string in FEN notation like Qqk.

	Raises

	ValueError if the castling FEN is syntactically
invalid.

	
set_board_fen(fen: str) → None

	Parses fen and sets up the board, where fen is the board part of
a FEN.

	Raises

	ValueError if syntactically invalid.

	
set_piece_map(pieces: Mapping[chess.Square, chess.Piece]) → None

	Sets up the board from a dictionary of pieces
by square index.

	
set_chess960_pos(scharnagl: int) → None

	Sets up a Chess960 starting position given its index between 0 and 959.
Also see from_chess960_pos().

	
chess960_pos(*, ignore_turn: bool = False, ignore_castling: bool = False, ignore_counters: bool = True) → Optional[int]

	Gets the Chess960 starting position index between 0 and 956,
or None if the current position is not a Chess960 starting
position.

By default, white to move (ignore_turn) and full castling rights
(ignore_castling) are required, but move counters
(ignore_counters) are ignored.

	
epd(*, shredder: bool = False, en_passant: Literal[legal, fen, xfen] = 'legal', promoted: Optional[bool] = None, **operations: Union[None, str, int, float, chess.Move, Iterable[chess.Move]]) → str

	Gets an EPD representation of the current position.

See fen() for FEN formatting options (shredder,
ep_square and promoted).

EPD operations can be given as keyword arguments. Supported operands
are strings, integers, finite floats, legal moves and None.
Additionally, the operation pv accepts a legal variation as
a list of moves. The operations am and bm accept a list of
legal moves in the current position.

The name of the field cannot be a lone dash and cannot contain spaces,
newlines, carriage returns or tabs.

hmvc and fmvn are not included by default. You can use:

>>> import chess
>>>
>>> board = chess.Board()
>>> board.epd(hmvc=board.halfmove_clock, fmvn=board.fullmove_number)
'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - hmvc 0; fmvn 1;'

	
set_epd(epd: str) → Dict[str, Union[None, str, int, float, chess.Move, List[chess.Move]]]

	Parses the given EPD string and uses it to set the position.

If present, hmvc and fmvn are used to set the half-move
clock and the full-move number. Otherwise, 0 and 1 are used.

Returns a dictionary of parsed operations. Values can be strings,
integers, floats, move objects, or lists of moves.

	Raises

	ValueError if the EPD string is invalid.

	
san(move: chess.Move) → str

	Gets the standard algebraic notation of the given move in the context
of the current position.

	
lan(move: chess.Move) → str

	Gets the long algebraic notation of the given move in the context of
the current position.

	
variation_san(variation: Iterable[chess.Move]) → str

	Given a sequence of moves, returns a string representing the sequence
in standard algebraic notation (e.g., 1. e4 e5 2. Nf3 Nc6 or
37...Bg6 38. fxg6).

The board will not be modified as a result of calling this.

	Raises

	ValueError if any moves in the sequence are illegal.

	
parse_san(san: str) → chess.Move

	Uses the current position as the context to parse a move in standard
algebraic notation and returns the corresponding move object.

Ambiguous moves are rejected. Overspecified moves (including long
algebraic notation) are accepted.

The returned move is guaranteed to be either legal or a null move.

	Raises

	ValueError if the SAN is invalid, illegal or ambiguous.

	
push_san(san: str) → chess.Move

	Parses a move in standard algebraic notation, makes the move and puts
it onto the move stack.

Returns the move.

	Raises

	ValueError if neither legal nor a null move.

	
uci(move: chess.Move, *, chess960: Optional[bool] = None) → str

	Gets the UCI notation of the move.

chess960 defaults to the mode of the board. Pass True to force
Chess960 mode.

	
parse_uci(uci: str) → chess.Move

	Parses the given move in UCI notation.

Supports both Chess960 and standard UCI notation.

The returned move is guaranteed to be either legal or a null move.

	Raises

	ValueError if the move is invalid or illegal in the
current position (but not a null move).

	
push_uci(uci: str) → chess.Move

	Parses a move in UCI notation and puts it on the move stack.

Returns the move.

	Raises

	ValueError if the move is invalid or illegal in the
current position (but not a null move).

	
push_xboard(san: str) → chess.Move

	Parses a move in standard algebraic notation, makes the move and puts
it onto the move stack.

Returns the move.

	Raises

	ValueError if neither legal nor a null move.

	
is_en_passant(move: chess.Move) → bool

	Checks if the given pseudo-legal move is an en passant capture.

	
is_capture(move: chess.Move) → bool

	Checks if the given pseudo-legal move is a capture.

	
is_zeroing(move: chess.Move) → bool

	Checks if the given pseudo-legal move is a capture or pawn move.

	
is_irreversible(move: chess.Move) → bool

	Checks if the given pseudo-legal move is irreversible.

In standard chess, pawn moves, captures, moves that destroy castling
rights and moves that cede en passant are irreversible.

This method has false-negatives with forced lines. For example, a check
that will force the king to lose castling rights is not considered
irreversible. Only the actual king move is.

	
is_castling(move: chess.Move) → bool

	Checks if the given pseudo-legal move is a castling move.

	
is_kingside_castling(move: chess.Move) → bool

	Checks if the given pseudo-legal move is a kingside castling move.

	
is_queenside_castling(move: chess.Move) → bool

	Checks if the given pseudo-legal move is a queenside castling move.

	
clean_castling_rights() → chess.Bitboard

	Returns valid castling rights filtered from
castling_rights.

	
has_castling_rights(color: chess.Color) → bool

	Checks if the given side has castling rights.

	
has_kingside_castling_rights(color: chess.Color) → bool

	Checks if the given side has kingside (that is h-side in Chess960)
castling rights.

	
has_queenside_castling_rights(color: chess.Color) → bool

	Checks if the given side has queenside (that is a-side in Chess960)
castling rights.

	
has_chess960_castling_rights() → bool

	Checks if there are castling rights that are only possible in Chess960.

	
status() → chess.Status

	Gets a bitmask of possible problems with the position.

STATUS_VALID if all basic validity requirements are met.
This does not imply that the position is actually reachable with a
series of legal moves from the starting position.

Otherwise, bitwise combinations of:
STATUS_NO_WHITE_KING,
STATUS_NO_BLACK_KING,
STATUS_TOO_MANY_KINGS,
STATUS_TOO_MANY_WHITE_PAWNS,
STATUS_TOO_MANY_BLACK_PAWNS,
STATUS_PAWNS_ON_BACKRANK,
STATUS_TOO_MANY_WHITE_PIECES,
STATUS_TOO_MANY_BLACK_PIECES,
STATUS_BAD_CASTLING_RIGHTS,
STATUS_INVALID_EP_SQUARE,
STATUS_OPPOSITE_CHECK,
STATUS_EMPTY,
STATUS_RACE_CHECK,
STATUS_RACE_OVER,
STATUS_RACE_MATERIAL,
STATUS_TOO_MANY_CHECKERS,
STATUS_IMPOSSIBLE_CHECK.

	
is_valid() → bool

	Checks some basic validity requirements.

See status() for details.

	
transform(f: Callable[[chess.Bitboard], chess.Bitboard]) → BoardT

	Returns a transformed copy of the board by applying a bitboard
transformation function.

Available transformations include chess.flip_vertical(),
chess.flip_horizontal(), chess.flip_diagonal(),
chess.flip_anti_diagonal(), chess.shift_down(),
chess.shift_up(), chess.shift_left(), and
chess.shift_right().

Alternatively, apply_transform() can be used
to apply the transformation on the board.

	
mirror() → BoardT

	Returns a mirrored copy of the board.

The board is mirrored vertically and piece colors are swapped, so that
the position is equivalent modulo color. Also swap the “en passant”
square, castling rights and turn.

Alternatively, apply_mirror() can be used
to mirror the board.

	
copy(*, stack: Union[bool, int] = True) → BoardT

	Creates a copy of the board.

Defaults to copying the entire move stack. Alternatively, stack can
be False, or an integer to copy a limited number of moves.

	
classmethod empty(*, chess960: bool = False) → BoardT

	Creates a new empty board. Also see clear().

	
classmethod from_epd(epd: str, *, chess960: bool = False) → Tuple[BoardT, Dict[str, Union[None, str, int, float, chess.Move, List[chess.Move]]]]

	Creates a new board from an EPD string. See
set_epd().

Returns the board and the dictionary of parsed operations as a tuple.

	
classmethod from_chess960_pos(scharnagl: int) → BoardT

	Creates a new board, initialized with a Chess960 starting position.

>>> import chess
>>> import random
>>>
>>> board = chess.Board.from_chess960_pos(random.randint(0, 959))

	
class chess.BaseBoard(board_fen: Optional[str] = 'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR')

	A board representing the position of chess pieces. See
Board for a full board with move generation.

The board is initialized with the standard chess starting position, unless
otherwise specified in the optional board_fen argument. If board_fen
is None, an empty board is created.

	
reset_board() → None

	Resets pieces to the starting position.

	
clear_board() → None

	Clears the board.

	
pieces(piece_type: chess.PieceType, color: chess.Color) → chess.SquareSet

	Gets pieces of the given type and color.

Returns a set of squares.

	
piece_at(square: chess.Square) → Optional[chess.Piece]

	Gets the piece at the given square.

	
piece_type_at(square: chess.Square) → Optional[chess.PieceType]

	Gets the piece type at the given square.

	
color_at(square: chess.Square) → Optional[chess.Color]

	Gets the color of the piece at the given square.

	
king(color: chess.Color) → Optional[chess.Square]

	Finds the king square of the given side. Returns None if there
is no king of that color.

In variants with king promotions, only non-promoted kings are
considered.

	
attacks(square: chess.Square) → chess.SquareSet

	Gets the set of attacked squares from the given square.

There will be no attacks if the square is empty. Pinned pieces are
still attacking other squares.

Returns a set of squares.

	
is_attacked_by(color: chess.Color, square: chess.Square) → bool

	Checks if the given side attacks the given square.

Pinned pieces still count as attackers. Pawns that can be captured
en passant are not considered attacked.

	
attackers(color: chess.Color, square: chess.Square) → chess.SquareSet

	Gets the set of attackers of the given color for the given square.

Pinned pieces still count as attackers.

Returns a set of squares.

	
pin(color: chess.Color, square: chess.Square) → chess.SquareSet

	Detects an absolute pin (and its direction) of the given square to
the king of the given color.

>>> import chess
>>>
>>> board = chess.Board("rnb1k2r/ppp2ppp/5n2/3q4/1b1P4/2N5/PP3PPP/R1BQKBNR w KQkq - 3 7")
>>> board.is_pinned(chess.WHITE, chess.C3)
True
>>> direction = board.pin(chess.WHITE, chess.C3)
>>> direction
SquareSet(0x0000_0001_0204_0810)
>>> print(direction)
.
.
.
1
. 1
. . 1
. . . 1
. . . . 1 . . .

Returns a set of squares that mask the rank,
file or diagonal of the pin. If there is no pin, then a mask of the
entire board is returned.

	
is_pinned(color: chess.Color, square: chess.Square) → bool

	Detects if the given square is pinned to the king of the given color.

	
remove_piece_at(square: chess.Square) → Optional[chess.Piece]

	Removes the piece from the given square. Returns the
Piece or None if the square was already empty.

	
set_piece_at(square: chess.Square, piece: Optional[chess.Piece], promoted: bool = False) → None

	Sets a piece at the given square.

An existing piece is replaced. Setting piece to None is
equivalent to remove_piece_at().

	
board_fen(*, promoted: Optional[bool] = False) → str

	Gets the board FEN (e.g.,
rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR).

	
set_board_fen(fen: str) → None

	Parses fen and sets up the board, where fen is the board part of
a FEN.

	Raises

	ValueError if syntactically invalid.

	
piece_map(*, mask: chess.Bitboard = 18446744073709551615) → Dict[chess.Square, chess.Piece]

	Gets a dictionary of pieces by square index.

	
set_piece_map(pieces: Mapping[chess.Square, chess.Piece]) → None

	Sets up the board from a dictionary of pieces
by square index.

	
set_chess960_pos(scharnagl: int) → None

	Sets up a Chess960 starting position given its index between 0 and 959.
Also see from_chess960_pos().

	
chess960_pos() → Optional[int]

	Gets the Chess960 starting position index between 0 and 959,
or None.

	
unicode(*, invert_color: bool = False, borders: bool = False, empty_square: str = '⭘') → str

	Returns a string representation of the board with Unicode pieces.
Useful for pretty-printing to a terminal.

	Parameters

	
	invert_color – Invert color of the Unicode pieces.

	borders – Show borders and a coordinate margin.

	
transform(f: Callable[[chess.Bitboard], chess.Bitboard]) → BaseBoardT

	Returns a transformed copy of the board by applying a bitboard
transformation function.

Available transformations include chess.flip_vertical(),
chess.flip_horizontal(), chess.flip_diagonal(),
chess.flip_anti_diagonal(), chess.shift_down(),
chess.shift_up(), chess.shift_left(), and
chess.shift_right().

Alternatively, apply_transform() can be used
to apply the transformation on the board.

	
mirror() → BaseBoardT

	Returns a mirrored copy of the board.

The board is mirrored vertically and piece colors are swapped, so that
the position is equivalent modulo color.

Alternatively, apply_mirror() can be used
to mirror the board.

	
copy() → BaseBoardT

	Creates a copy of the board.

	
classmethod empty() → BaseBoardT

	Creates a new empty board. Also see
clear_board().

	
classmethod from_chess960_pos(scharnagl: int) → BaseBoardT

	Creates a new board, initialized with a Chess960 starting position.

>>> import chess
>>> import random
>>>
>>> board = chess.Board.from_chess960_pos(random.randint(0, 959))

Outcome

	
class chess.Outcome(termination: chess.Termination, winner: Optional[chess.Color])

	Information about the outcome of an ended game, usually obtained from
chess.Board.outcome().

	
termination: chess.Termination

	The reason for the game to have ended.

	
winner: Optional[chess.Color]

	The winning color or None if drawn.

	
result() → str

	Returns 1-0, 0-1 or 1/2-1/2.

	
class chess.Termination(value)

	Enum with reasons for a game to be over.

	
CHECKMATE = 1

	See chess.Board.is_checkmate().

	
STALEMATE = 2

	See chess.Board.is_stalemate().

	
INSUFFICIENT_MATERIAL = 3

	See chess.Board.is_insufficient_material().

	
SEVENTYFIVE_MOVES = 4

	See chess.Board.is_seventyfive_moves().

	
FIVEFOLD_REPETITION = 5

	See chess.Board.is_fivefold_repetition().

	
FIFTY_MOVES = 6

	See chess.Board.can_claim_fifty_moves().

	
THREEFOLD_REPETITION = 7

	See chess.Board.can_claim_threefold_repetition().

	
VARIANT_WIN = 8

	See chess.Board.is_variant_win().

	
VARIANT_LOSS = 9

	See chess.Board.is_variant_loss().

	
VARIANT_DRAW = 10

	See chess.Board.is_variant_draw().

Square sets

	
class chess.SquareSet(squares: chess.IntoSquareSet = 0)

	A set of squares.

>>> import chess
>>>
>>> squares = chess.SquareSet([chess.A8, chess.A1])
>>> squares
SquareSet(0x0100_0000_0000_0001)

>>> squares = chess.SquareSet(chess.BB_A8 | chess.BB_RANK_1)
>>> squares
SquareSet(0x0100_0000_0000_00ff)

>>> print(squares)
1
.
.
.
.
.
.
1 1 1 1 1 1 1 1

>>> len(squares)
9

>>> bool(squares)
True

>>> chess.B1 in squares
True

>>> for square in squares:
... # 0 -- chess.A1
... # 1 -- chess.B1
... # 2 -- chess.C1
... # 3 -- chess.D1
... # 4 -- chess.E1
... # 5 -- chess.F1
... # 6 -- chess.G1
... # 7 -- chess.H1
... # 56 -- chess.A8
... print(square)
...
0
1
2
3
4
5
6
7
56

>>> list(squares)
[0, 1, 2, 3, 4, 5, 6, 7, 56]

Square sets are internally represented by 64-bit integer masks of the
included squares. Bitwise operations can be used to compute unions,
intersections and shifts.

>>> int(squares)
72057594037928191

Also supports common set operations like
issubset(), issuperset(),
union(), intersection(),
difference(),
symmetric_difference() and
copy() as well as
update(),
intersection_update(),
difference_update(),
symmetric_difference_update() and
clear().

	
add(square: chess.Square) → None

	Adds a square to the set.

	
discard(square: chess.Square) → None

	Discards a square from the set.

	
isdisjoint(other: chess.IntoSquareSet) → bool

	Tests if the square sets are disjoint.

	
issubset(other: chess.IntoSquareSet) → bool

	Tests if this square set is a subset of another.

	
issuperset(other: chess.IntoSquareSet) → bool

	Tests if this square set is a superset of another.

	
remove(square: chess.Square) → None

	Removes a square from the set.

	Raises

	KeyError if the given square was not in the set.

	
pop() → chess.Square

	Removes and returns a square from the set.

	Raises

	KeyError if the set is empty.

	
clear() → None

	Removes all elements from this set.

	
carry_rippler() → Iterator[chess.Bitboard]

	Iterator over the subsets of this set.

	
mirror() → chess.SquareSet

	Returns a vertically mirrored copy of this square set.

	
tolist() → List[bool]

	Converts the set to a list of 64 bools.

	
classmethod ray(a: chess.Square, b: chess.Square) → chess.SquareSet

	All squares on the rank, file or diagonal with the two squares, if they
are aligned.

>>> import chess
>>>
>>> print(chess.SquareSet.ray(chess.E2, chess.B5))
.
.
1
. 1
. . 1
. . . 1
. . . . 1 . . .
. 1 . .

	
classmethod between(a: chess.Square, b: chess.Square) → chess.SquareSet

	All squares on the rank, file or diagonal between the two squares
(bounds not included), if they are aligned.

>>> import chess
>>>
>>> print(chess.SquareSet.between(chess.E2, chess.B5))
.
.
.
.
. . 1
. . . 1
.
.

	
classmethod from_square(square: chess.Square) → chess.SquareSet

	Creates a SquareSet from a single square.

>>> import chess
>>>
>>> chess.SquareSet.from_square(chess.A1) == chess.BB_A1
True

Common integer masks are:

	
chess.BB_EMPTY: chess.Bitboard = 0

	

	
chess.BB_ALL: chess.Bitboard = 0xFFFF_FFFF_FFFF_FFFF

	

Single squares:

	
chess.BB_SQUARES = [chess.BB_A1, chess.BB_B1, ..., chess.BB_G8, chess.BB_H8]

	

Ranks and files:

	
chess.BB_RANKS = [chess.BB_RANK_1, ..., chess.BB_RANK_8]

	

	
chess.BB_FILES = [chess.BB_FILE_A, ..., chess.BB_FILE_H]

	

Other masks:

	
chess.BB_LIGHT_SQUARES: chess.Bitboard = 0x55AA_55AA_55AA_55AA

	

	
chess.BB_DARK_SQUARES: chess.Bitboard = 0xAA55_AA55_AA55_AA55

	

	
chess.BB_BACKRANKS = chess.BB_RANK_1 | chess.BB_RANK_8

	

	
chess.BB_CORNERS = chess.BB_A1 | chess.BB_H1 | chess.BB_A8 | chess.BB_H8

	

	
chess.BB_CENTER = chess.BB_D4 | chess.BB_E4 | chess.BB_D5 | chess.BB_E5

	

PGN parsing and writing

Parsing

	
chess.pgn.read_game(handle: TextIO) → Optional[chess.pgn.Game]

	
chess.pgn.read_game(handle: TextIO, *, Visitor: Callable[], chess.pgn.BaseVisitor[ResultT]]) → Optional[ResultT]

	Reads a game from a file opened in text mode.

>>> import chess.pgn
>>>
>>> pgn = open("data/pgn/kasparov-deep-blue-1997.pgn")
>>>
>>> first_game = chess.pgn.read_game(pgn)
>>> second_game = chess.pgn.read_game(pgn)
>>>
>>> first_game.headers["Event"]
'IBM Man-Machine, New York USA'
>>>
>>> # Iterate through all moves and play them on a board.
>>> board = first_game.board()
>>> for move in first_game.mainline_moves():
... board.push(move)
...
>>> board
Board('4r3/6P1/2p2P1k/1p6/pP2p1R1/P1B5/2P2K2/3r4 b - - 0 45')

By using text mode, the parser does not need to handle encodings. It is the
caller’s responsibility to open the file with the correct encoding.
PGN files are usually ASCII or UTF-8 encoded, sometimes with BOM (which
this parser automatically ignores).

>>> pgn = open("data/pgn/kasparov-deep-blue-1997.pgn", encoding="utf-8")

Use StringIO to parse games from a string.

>>> import io
>>>
>>> pgn = io.StringIO("1. e4 e5 2. Nf3 *")
>>> game = chess.pgn.read_game(pgn)

The end of a game is determined by a completely blank line or the end of
the file. (Of course, blank lines in comments are possible).

According to the PGN standard, at least the usual seven header tags are
required for a valid game. This parser also handles games without any
headers just fine.

The parser is relatively forgiving when it comes to errors. It skips over
tokens it can not parse. By default, any exceptions are logged and
collected in Game.errors. This behavior can
be overridden.

Returns the parsed game or None if the end of file is reached.

Writing

If you want to export your game with all headers, comments and variations,
you can do it like this:

>>> import chess
>>> import chess.pgn
>>>
>>> game = chess.pgn.Game()
>>> game.headers["Event"] = "Example"
>>> node = game.add_variation(chess.Move.from_uci("e2e4"))
>>> node = node.add_variation(chess.Move.from_uci("e7e5"))
>>> node.comment = "Comment"
>>>
>>> print(game)
[Event "Example"]
[Site "?"]
[Date "????.??.??"]
[Round "?"]
[White "?"]
[Black "?"]
[Result "*"]

1. e4 e5 { Comment } *

Remember that games in files should be separated with extra blank lines.

>>> print(game, file=open("/dev/null", "w"), end="\n\n")

Use the StringExporter() or
FileExporter() visitors if you need more control.

Game model

Games are represented as a tree of moves. Conceptually each node represents a
position of the game. The tree consists of one root node
(Game, also holding game headers) and many child
nodes (ChildNode).
Both extend GameNode.

	
class chess.pgn.GameNode(*, comment: str = '')

	
	
parent: Optional[chess.pgn.GameNode]

	The parent node or None if this is the root node of the game.

	
move: Optional[chess.Move]

	The move leading to this node or None if this is the root node of the
game.

	
variations: List[chess.pgn.ChildNode]

	A list of child nodes.

	
comment: str

	A comment that goes behind the move leading to this node. Comments
that occur before any moves are assigned to the root node.

	
abstract board() → chess.Board

	Gets a board with the position of the node.

For the root node, this is the default starting position (for the
Variant) unless the FEN header tag is set.

It’s a copy, so modifying the board will not alter the game.

	
abstract ply() → int

	Returns the number of half-moves up to this node, as indicated by
fullmove number and turn of the position.
See chess.Board.ply().

Usually this is equal to the number of parent nodes, but it may be
more if the game was started from a custom position.

	
turn() → chess.Color

	Gets the color to move at this node. See chess.Board.turn.

	
game() → chess.pgn.Game

	Gets the root node, i.e., the game.

	
end() → chess.pgn.GameNode

	Follows the main variation to the end and returns the last node.

	
is_end() → bool

	Checks if this node is the last node in the current variation.

	
starts_variation() → bool

	Checks if this node starts a variation (and can thus have a starting
comment). The root node does not start a variation and can have no
starting comment.

For example, in 1. e4 e5 (1... c5 2. Nf3) 2. Nf3, the node holding
1… c5 starts a variation.

	
is_mainline() → bool

	Checks if the node is in the mainline of the game.

	
is_main_variation() → bool

	Checks if this node is the first variation from the point of view of its
parent. The root node is also in the main variation.

	
variation(move: Union[int, chess.Move, chess.pgn.GameNode]) → chess.pgn.ChildNode

	Gets a child node by either the move or the variation index.

	
has_variation(move: Union[int, chess.Move, chess.pgn.GameNode]) → bool

	Checks if this node has the given variation.

	
promote_to_main(move: Union[int, chess.Move, chess.pgn.GameNode]) → None

	Promotes the given move to the main variation.

	
promote(move: Union[int, chess.Move, chess.pgn.GameNode]) → None

	Moves a variation one up in the list of variations.

	
demote(move: Union[int, chess.Move, chess.pgn.GameNode]) → None

	Moves a variation one down in the list of variations.

	
remove_variation(move: Union[int, chess.Move, chess.pgn.GameNode]) → None

	Removes a variation.

	
add_variation(move: chess.Move, *, comment: str = '', starting_comment: str = '', nags: Iterable[int] = []) → chess.pgn.ChildNode

	Creates a child node with the given attributes.

	
add_main_variation(move: chess.Move, *, comment: str = '', nags: Iterable[int] = []) → chess.pgn.ChildNode

	Creates a child node with the given attributes and promotes it to the
main variation.

	
next() → Optional[chess.pgn.ChildNode]

	Returns the first node of the mainline after this node, or None if
this node does not have any children.

	
mainline() → chess.pgn.Mainline[chess.pgn.ChildNode]

	Returns an iterable over the mainline starting after this node.

	
mainline_moves() → chess.pgn.Mainline[chess.Move]

	Returns an iterable over the main moves after this node.

	
add_line(moves: Iterable[chess.Move], *, comment: str = '', starting_comment: str = '', nags: Iterable[int] = []) → chess.pgn.GameNode

	Creates a sequence of child nodes for the given list of moves.
Adds comment and nags to the last node of the line and returns it.

	
eval() → Optional[chess.engine.PovScore]

	Parses the first valid [%eval ...] annotation in the comment of
this node, if any.

	
eval_depth() → Optional[int]

	Parses the first valid [%eval ...] annotation in the comment of
this node and returns the corresponding depth, if any.

	
set_eval(score: Optional[chess.engine.PovScore], depth: Optional[int] = None) → None

	Replaces the first valid [%eval ...] annotation in the comment of
this node or adds a new one.

	
arrows() → List[chess.svg.Arrow]

	Parses all [%csl ...] and [%cal ...] annotations in the comment
of this node.

Returns a list of arrows.

	
set_arrows(arrows: Iterable[Union[chess.svg.Arrow, Tuple[chess.Square, chess.Square]]]) → None

	Replaces all valid [%csl ...] and [%cal ...] annotations in
the comment of this node or adds new ones.

	
clock() → Optional[float]

	Parses the first valid [%clk ...] annotation in the comment of
this node, if any.

Returns the player’s remaining time to the next time control after this
move, in seconds.

	
set_clock(seconds: Optional[float]) → None

	Replaces the first valid [%clk ...] annotation in the comment of
this node or adds a new one.

	
emt() → Optional[float]

	Parses the first valid [%emt ...] annotation in the comment of
this node, if any.

Returns the player’s elapsed move time use for the comment of this
move, in seconds.

	
set_emt(seconds: Optional[float]) → None

	Replaces the first valid [%emt ...] annotation in the comment of
this node or adds a new one.

	
abstract accept(visitor: chess.pgn.BaseVisitor[ResultT]) → ResultT

	Traverses game nodes in PGN order using the given visitor. Starts with
the move leading to this node. Returns the visitor result.

	
accept_subgame(visitor: chess.pgn.BaseVisitor[ResultT]) → ResultT

	Traverses headers and game nodes in PGN order, as if the game was
starting after this node. Returns the visitor result.

	
class chess.pgn.Game(headers: Optional[Union[Mapping[str, str], Iterable[Tuple[str, str]]]] = None)

	The root node of a game with extra information such as headers and the
starting position. Extends GameNode.

	
headers: chess.pgn.Headers

	A mapping of headers. By default, the following 7 headers are provided
(Seven Tag Roster):

>>> import chess.pgn
>>>
>>> game = chess.pgn.Game()
>>> game.headers
Headers(Event='?', Site='?', Date='????.??.??', Round='?', White='?', Black='?', Result='*')

	
errors: List[Exception]

	A list of errors (such as illegal or ambiguous moves) encountered while
parsing the game.

	
setup(board: Union[chess.Board, str]) → None

	Sets up a specific starting position. This sets (or resets) the
FEN, SetUp, and Variant header tags.

	
accept(visitor: chess.pgn.BaseVisitor[ResultT]) → ResultT

	Traverses the game in PGN order using the given visitor. Returns
the visitor result.

	
classmethod from_board(board: chess.Board) → GameT

	Creates a game from the move stack of a Board().

	
classmethod without_tag_roster() → GameT

	Creates an empty game without the default Seven Tag Roster.

	
class chess.pgn.ChildNode(parent: chess.pgn.GameNode, move: chess.Move, *, comment: str = '', starting_comment: str = '', nags: Iterable[int] = [])

	A child node of a game, with the move leading to it.
Extends GameNode.

	
nags: Set[int]

	A set of NAGs as integers. NAGs always go behind a move, so the root
node of the game will never have NAGs.

	
parent: chess.pgn.GameNode

	The parent node.

	
move: chess.Move

	The move leading to this node.

	
starting_comment: str

	A comment for the start of a variation. Only nodes that
actually start a variation (starts_variation()
checks this) can have a starting comment. The root node can not have
a starting comment.

	
san() → str

	Gets the standard algebraic notation of the move leading to this node.
See chess.Board.san().

Do not call this on the root node.

	
uci(*, chess960: Optional[bool] = None) → str

	Gets the UCI notation of the move leading to this node.
See chess.Board.uci().

Do not call this on the root node.

	
end() → chess.pgn.ChildNode

	Follows the main variation to the end and returns the last node.

Visitors

Visitors are an advanced concept for game tree traversal.

	
class chess.pgn.BaseVisitor(*args, **kwds)

	Base class for visitors.

Use with chess.pgn.Game.accept() or
chess.pgn.GameNode.accept() or chess.pgn.read_game().

The methods are called in PGN order.

	
begin_game() → Optional[chess.pgn.SkipType]

	Called at the start of a game.

	
begin_headers() → Optional[chess.pgn.Headers]

	Called before visiting game headers.

	
visit_header(tagname: str, tagvalue: str) → None

	Called for each game header.

	
end_headers() → Optional[chess.pgn.SkipType]

	Called after visiting game headers.

	
parse_san(board: chess.Board, san: str) → chess.Move

	When the visitor is used by a parser, this is called to parse a move
in standard algebraic notation.

You can override the default implementation to work around specific
quirks of your input format.

Deprecated since version 1.1: This method is very limited, because it is only called on moves
that the parser recognizes in the first place. Instead of adding
workarounds here, please report common quirks so that
they can be handled for everyone.

	
visit_move(board: chess.Board, move: chess.Move) → None

	Called for each move.

board is the board state before the move. The board state must be
restored before the traversal continues.

	
visit_board(board: chess.Board) → None

	Called for the starting position of the game and after each move.

The board state must be restored before the traversal continues.

	
visit_comment(comment: str) → None

	Called for each comment.

	
visit_nag(nag: int) → None

	Called for each NAG.

	
begin_variation() → Optional[chess.pgn.SkipType]

	Called at the start of a new variation. It is not called for the
mainline of the game.

	
end_variation() → None

	Concludes a variation.

	
visit_result(result: str) → None

	Called at the end of a game with the value from the Result header.

	
end_game() → None

	Called at the end of a game.

	
abstract result() → ResultT

	Called to get the result of the visitor.

	
handle_error(error: Exception) → None

	Called for encountered errors. Defaults to raising an exception.

The following visitors are readily available.

	
class chess.pgn.GameBuilder

	
class chess.pgn.GameBuilder(*, Game: Type[GameT])

	Creates a game model. Default visitor for read_game().

	
handle_error(error: Exception) → None

	Populates chess.pgn.Game.errors with encountered errors and
logs them.

You can silence the log and handle errors yourself after parsing:

>>> import chess.pgn
>>> import logging
>>>
>>> logging.getLogger("chess.pgn").setLevel(logging.CRITICAL)
>>>
>>> pgn = open("data/pgn/kasparov-deep-blue-1997.pgn")
>>>
>>> game = chess.pgn.read_game(pgn)
>>> game.errors # List of exceptions
[]

You can also override this method to hook into error handling:

>>> import chess.pgn
>>>
>>> class MyGameBuilder(chess.pgn.GameBuilder):
>>> def handle_error(self, error: Exception) -> None:
>>> pass # Ignore error
>>>
>>> pgn = open("data/pgn/kasparov-deep-blue-1997.pgn")
>>>
>>> game = chess.pgn.read_game(pgn, Visitor=MyGameBuilder)

	
result() → GameT

	Returns the visited Game().

	
class chess.pgn.HeadersBuilder

	
class chess.pgn.HeadersBuilder(*, Headers: Type[chess.pgn.Headers])

	Collects headers into a dictionary.

	
class chess.pgn.BoardBuilder(*args, **kwds)

	Returns the final position of the game. The mainline of the game is
on the move stack.

	
class chess.pgn.SkipVisitor(*args, **kwds)

	Skips a game.

	
class chess.pgn.StringExporter(*, columns: Optional[int] = 80, headers: bool = True, comments: bool = True, variations: bool = True)

	Allows exporting a game as a string.

>>> import chess.pgn
>>>
>>> game = chess.pgn.Game()
>>>
>>> exporter = chess.pgn.StringExporter(headers=True, variations=True, comments=True)
>>> pgn_string = game.accept(exporter)

Only columns characters are written per line. If columns is None,
then the entire movetext will be on a single line. This does not affect
header tags and comments.

There will be no newline characters at the end of the string.

	
class chess.pgn.FileExporter(handle: TextIO, *, columns: Optional[int] = 80, headers: bool = True, comments: bool = True, variations: bool = True)

	Acts like a StringExporter, but games are written
directly into a text file.

There will always be a blank line after each game. Handling encodings is up
to the caller.

>>> import chess.pgn
>>>
>>> game = chess.pgn.Game()
>>>
>>> new_pgn = open("/dev/null", "w", encoding="utf-8")
>>> exporter = chess.pgn.FileExporter(new_pgn)
>>> game.accept(exporter)

NAGs

Numeric anotation glyphs describe moves and positions using standardized codes
that are understood by many chess programs. During PGN parsing, annotations
like !, ?, !!, etc., are also converted to NAGs.

	
chess.pgn.NAG_GOOD_MOVE = 1

	A good move. Can also be indicated by ! in PGN notation.

	
chess.pgn.NAG_MISTAKE = 2

	A mistake. Can also be indicated by ? in PGN notation.

	
chess.pgn.NAG_BRILLIANT_MOVE = 3

	A brilliant move. Can also be indicated by !! in PGN notation.

	
chess.pgn.NAG_BLUNDER = 4

	A blunder. Can also be indicated by ?? in PGN notation.

	
chess.pgn.NAG_SPECULATIVE_MOVE = 5

	A speculative move. Can also be indicated by !? in PGN notation.

	
chess.pgn.NAG_DUBIOUS_MOVE = 6

	A dubious move. Can also be indicated by ?! in PGN notation.

Skimming

These functions allow for quickly skimming games without fully parsing them.

	
chess.pgn.read_headers(handle: TextIO) → Optional[chess.pgn.Headers]

	Reads game headers from a PGN file opened in text mode. Skips the rest of
the game.

Since actually parsing many games from a big file is relatively expensive,
this is a better way to look only for specific games and then seek and
parse them later.

This example scans for the first game with Kasparov as the white player.

>>> import chess.pgn
>>>
>>> pgn = open("data/pgn/kasparov-deep-blue-1997.pgn")
>>>
>>> kasparov_offsets = []
>>>
>>> while True:
... offset = pgn.tell()
...
... headers = chess.pgn.read_headers(pgn)
... if headers is None:
... break
...
... if "Kasparov" in headers.get("White", "?"):
... kasparov_offsets.append(offset)

Then it can later be seeked and parsed.

>>> for offset in kasparov_offsets:
... pgn.seek(offset)
... chess.pgn.read_game(pgn)
0
<Game at ... ('Garry Kasparov' vs. 'Deep Blue (Computer)', 1997.??.??)>
1436
<Game at ... ('Garry Kasparov' vs. 'Deep Blue (Computer)', 1997.??.??)>
3067
<Game at ... ('Garry Kasparov' vs. 'Deep Blue (Computer)', 1997.??.??)>

	
chess.pgn.skip_game(handle: TextIO) → bool

	Skips a game. Returns True if a game was found and skipped.

Polyglot opening book reading

	
chess.polyglot.open_reader(path: Union[str, bytes, os.PathLike]) → chess.polyglot.MemoryMappedReader

	Creates a reader for the file at the given path.

The following example opens a book to find all entries for the start
position:

>>> import chess
>>> import chess.polyglot
>>>
>>> board = chess.Board()
>>>
>>> with chess.polyglot.open_reader("data/polyglot/performance.bin") as reader:
... for entry in reader.find_all(board):
... print(entry.move, entry.weight, entry.learn)
e2e4 1 0
d2d4 1 0
c2c4 1 0

	
class chess.polyglot.Entry(key: int, raw_move: int, weight: int, learn: int, move: chess.Move)

	An entry from a Polyglot opening book.

	
key: int

	The Zobrist hash of the position.

	
raw_move: int

	The raw binary representation of the move. Use
move instead.

	
weight: int

	An integer value that can be used as the weight for this entry.

	
learn: int

	Another integer value that can be used for extra information.

	
move: chess.Move

	The Move.

	
class chess.polyglot.MemoryMappedReader(filename: Union[str, bytes, os.PathLike])

	Maps a Polyglot opening book to memory.

	
find_all(board: Union[chess.Board, int], *, minimum_weight: int = 1, exclude_moves: Container[chess.Move] = []) → Iterator[chess.polyglot.Entry]

	Seeks a specific position and yields corresponding entries.

	
find(board: Union[chess.Board, int], *, minimum_weight: int = 1, exclude_moves: Container[chess.Move] = []) → chess.polyglot.Entry

	Finds the main entry for the given position or Zobrist hash.

The main entry is the (first) entry with the highest weight.

By default, entries with weight 0 are excluded. This is a common
way to delete entries from an opening book without compacting it. Pass
minimum_weight 0 to select all entries.

	Raises

	IndexError if no entries are found. Use
get() if you prefer to
get None instead of an exception.

	
choice(board: Union[chess.Board, int], *, minimum_weight: int = 1, exclude_moves: Container[chess.Move] = [], random: Optional[random.Random] = None) → chess.polyglot.Entry

	Uniformly selects a random entry for the given position.

	Raises

	IndexError if no entries are found.

	
weighted_choice(board: Union[chess.Board, int], *, exclude_moves: Container[chess.Move] = [], random: Optional[random.Random] = None) → chess.polyglot.Entry

	Selects a random entry for the given position, distributed by the
weights of the entries.

	Raises

	IndexError if no entries are found.

	
close() → None

	Closes the reader.

	
chess.polyglot.POLYGLOT_RANDOM_ARRAY = [0x9D39247E33776D41, ..., 0xF8D626AAAF278509]

	Array of 781 polyglot compatible pseudo random values for Zobrist hashing.

	
chess.polyglot.zobrist_hash(board: chess.Board, *, _hasher: Callable[[chess.Board], int] = <chess.polyglot.ZobristHasher object>) → int

	Calculates the Polyglot Zobrist hash of the position.

A Zobrist hash is an XOR of pseudo-random values picked from
an array. Which values are picked is decided by features of the
position, such as piece positions, castling rights and en passant
squares.

Gaviota endgame tablebase probing

Gaviota tablebases provide WDL (win/draw/loss) and DTM (depth to mate)
information for all endgame positions with up to 5 pieces. Positions with
castling rights are not included.

Warning

Ensure tablebase files match the known checksums. Maliciously crafted
tablebase files may cause denial of service with
PythonTablebase and memory unsafety with
NativeTablebase.

	
chess.gaviota.open_tablebase(directory: str, *, libgtb: Optional[str] = None, LibraryLoader: ctypes.LibraryLoader[ctypes.CDLL] = <ctypes.LibraryLoader object>) → Union[NativeTablebase, PythonTablebase]

	Opens a collection of tables for probing.

First native access via the shared library libgtb is tried. You can
optionally provide a specific library name or a library loader.
The shared library has global state and caches, so only one instance can
be open at a time.

Second, pure Python probing code is tried.

	
class chess.gaviota.PythonTablebase

	Provides access to Gaviota tablebases using pure Python code.

	
add_directory(directory: str) → None

	Adds .gtb.cp4 tables from a directory. The relevant files are lazily
opened when the tablebase is actually probed.

	
probe_dtm(board: chess.Board) → int

	Probes for depth to mate information.

The absolute value is the number of half-moves until forced mate
(or 0 in drawn positions). The value is positive if the
side to move is winning, otherwise it is negative.

In the example position, white to move will get mated in 10 half-moves:

>>> import chess
>>> import chess.gaviota
>>>
>>> with chess.gaviota.open_tablebase("data/gaviota") as tablebase:
... board = chess.Board("8/8/8/8/8/8/8/K2kr3 w - - 0 1")
... print(tablebase.probe_dtm(board))
...
-10

	Raises

	KeyError (or specifically
chess.gaviota.MissingTableError) if the probe fails. Use
get_dtm() if you prefer
to get None instead of an exception.

Note that probing a corrupted table file is undefined behavior.

	
probe_wdl(board: chess.Board) → int

	Probes for win/draw/loss information.

Returns 1 if the side to move is winning, 0 if it is a draw,
and -1 if the side to move is losing.

>>> import chess
>>> import chess.gaviota
>>>
>>> with chess.gaviota.open_tablebase("data/gaviota") as tablebase:
... board = chess.Board("8/4k3/8/B7/8/8/8/4K3 w - - 0 1")
... print(tablebase.probe_wdl(board))
...
0

	Raises

	KeyError (or specifically
chess.gaviota.MissingTableError) if the probe fails. Use
get_wdl() if you prefer
to get None instead of an exception.

Note that probing a corrupted table file is undefined behavior.

	
close() → None

	Closes all loaded tables.

libgtb

For faster access you can build and install
a shared library [https://github.com/michiguel/Gaviota-Tablebases].
Otherwise the pure Python probing code is used.

git clone https://github.com/michiguel/Gaviota-Tablebases.git
cd Gaviota-Tablebases
make
sudo make install

	
chess.gaviota.open_tablebase_native(directory: str, *, libgtb: Optional[str] = None, LibraryLoader: ctypes.LibraryLoader[ctypes.CDLL] = <ctypes.LibraryLoader object>) → NativeTablebase

	Opens a collection of tables for probing using libgtb.

In most cases open_tablebase() should be used.
Use this function only if you do not want to downgrade to pure Python
tablebase probing.

	Raises

	RuntimeError or OSError when libgtb can not be used.

	
class chess.gaviota.NativeTablebase(libgtb: ctypes.CDLL)

	Provides access to Gaviota tablebases via the shared library libgtb.
Has the same interface as PythonTablebase.

Syzygy endgame tablebase probing

Syzygy tablebases provide WDL50 (win/draw/loss under the 50-move rule) and
DTZ50’’ (distance to zeroing) information with rounding for all endgame
positions with up to 7 pieces. Positions with castling rights are not included.

Warning

Ensure tablebase files match the known checksums. Maliciously crafted
tablebase files may cause denial of service.

	
chess.syzygy.open_tablebase(directory: str, *, load_wdl: bool = True, load_dtz: bool = True, max_fds: Optional[int] = 128, VariantBoard: Type[chess.Board] = <class 'chess.Board'>) → chess.syzygy.Tablebase

	Opens a collection of tables for probing. See
Tablebase.

Note

Generally probing requires tablebase files for the specific
material composition, as well as material compositions transitively
reachable by captures and promotions.
This is important because 6-piece and 5-piece (let alone 7-piece) files
are often distributed separately, but are both required for 6-piece
positions. Use add_directory() to load
tables from additional directories.

	
class chess.syzygy.Tablebase(*, max_fds: Optional[int] = 128, VariantBoard: Type[chess.Board] = <class 'chess.Board'>)

	Manages a collection of tablebase files for probing.

If max_fds is not None, will at most use max_fds open file
descriptors at any given time. The least recently used tables are closed,
if necessary.

	
add_directory(directory: str, *, load_wdl: bool = True, load_dtz: bool = True) → int

	Adds tables from a directory.

By default, all available tables with the correct file names
(e.g., WDL files like KQvKN.rtbw and DTZ files like KRBvK.rtbz)
are added.

The relevant files are lazily opened when the tablebase is actually
probed.

Returns the number of table files that were found.

	
probe_wdl(board: chess.Board) → int

	Probes WDL tables for win/draw/loss information under the 50-move rule,
assuming the position has been reached directly after a capture or
pawn move.

Probing is thread-safe when done with different board objects and
if board objects are not modified during probing.

Returns 2 if the side to move is winning, 0 if the position is
a draw and -2 if the side to move is losing.

Returns 1 in case of a cursed win and -1 in case of a blessed
loss. Mate can be forced but the position can be drawn due to the
fifty-move rule.

>>> import chess
>>> import chess.syzygy
>>>
>>> with chess.syzygy.open_tablebase("data/syzygy/regular") as tablebase:
... board = chess.Board("8/2K5/4B3/3N4/8/8/4k3/8 b - - 0 1")
... print(tablebase.probe_wdl(board))
...
-2

	Raises

	KeyError (or specifically
chess.syzygy.MissingTableError) if the position could not
be found in the tablebase. Use
get_wdl() if you prefer to get
None instead of an exception.

Note that probing corrupted table files is undefined behavior.

	
probe_dtz(board: chess.Board) → int

	Probes DTZ tables for
DTZ50’’ information with rounding [https://syzygy-tables.info/metrics#dtz].

Minmaxing the DTZ50’’ values guarantees winning a won position
(and drawing a drawn position), because it makes progress keeping the
win in hand.
However, the lines are not always the most straightforward ways to win.
Engines like Stockfish calculate themselves, checking with DTZ, but
only play according to DTZ if they can not manage on their own.

Returns a positive value if the side to move is winning, 0 if the
position is a draw, and a negative value if the side to move is losing.
More precisely:

	WDL

	DTZ

	

	-2

	-100 <= n <= -1

	Unconditional loss (assuming 50-move
counter is zero), where a zeroing move can
be forced in -n plies.

	-1

	n < -100

	Loss, but draw under the 50-move rule.
A zeroing move can be forced in -n plies
or -n - 100 plies (if a later phase is
responsible for the blessed loss).

	0

	0

	Draw.

	1

	100 < n

	Win, but draw under the 50-move rule.
A zeroing move can be forced in n plies or
n - 100 plies (if a later phase is
responsible for the cursed win).

	2

	1 <= n <= 100

	Unconditional win (assuming 50-move
counter is zero), where a zeroing move can
be forced in n plies.

The return value can be off by one: a return value -n can mean a
losing zeroing move in in n + 1 plies and a return value +n can mean a
winning zeroing move in n + 1 plies.
This implies some primary tablebase lines may waste up to 1 ply.
Rounding is never used for endgame phases where it would change the
game theoretical outcome.

This means users need to be careful in positions that are nearly drawn
under the 50-move rule! Carelessly wasting 1 more ply by not following
the tablebase recommendation, for a total of 2 wasted plies, may
change the outcome of the game.

>>> import chess
>>> import chess.syzygy
>>>
>>> with chess.syzygy.open_tablebase("data/syzygy/regular") as tablebase:
... board = chess.Board("8/2K5/4B3/3N4/8/8/4k3/8 b - - 0 1")
... print(tablebase.probe_dtz(board))
...
-53

Probing is thread-safe when done with different board objects and
if board objects are not modified during probing.

Both DTZ and WDL tables are required in order to probe for DTZ.

	Raises

	KeyError (or specifically
chess.syzygy.MissingTableError) if the position could not
be found in the tablebase. Use
get_dtz() if you prefer to get
None instead of an exception.

Note that probing corrupted table files is undefined behavior.

	
close() → None

	Closes all loaded tables.

UCI/XBoard engine communication

The Universal chess interface (UCI) [https://backscattering.de/chess/uci/]
and XBoard protocol [https://www.gnu.org/software/xboard/engine-intf.html]
are standards for communicating with chess engines. This module
implements an abstraction for playing moves and analysing positions with
both kinds of engines.

Warning

Many popular chess engines make no guarantees, not even memory
safety, when parameters and positions are not completely
valid. This module tries to deal with
benign misbehaving engines, but ultimately they are executables running
on your system.

The preferred way to use the API is with an
asyncio [https://docs.python.org/3/library/asyncio.html] event loop.
The examples also show a synchronous wrapper
SimpleEngine that automatically spawns an event loop
in the background.

Playing

Example: Let Stockfish play against itself, 100 milliseconds per move.

import chess
import chess.engine

engine = chess.engine.SimpleEngine.popen_uci(r"C:\Users\xxxxx\Downloads\stockfish_14_win_x64\stockfish_14_win_x64_avx2.exe")

board = chess.Board()
while not board.is_game_over():
 result = engine.play(board, chess.engine.Limit(time=0.1))
 board.push(result.move)

engine.quit()

import asyncio
import chess
import chess.engine

async def main() -> None:
 transport, engine = await chess.engine.popen_uci(r"C:\Users\xxxxx\Downloads\stockfish_14_win_x64\stockfish_14_win_x64_avx2.exe")

 board = chess.Board()
 while not board.is_game_over():
 result = await engine.play(board, chess.engine.Limit(time=0.1))
 board.push(result.move)

 await engine.quit()

asyncio.set_event_loop_policy(chess.engine.EventLoopPolicy())
asyncio.run(main())

	
class chess.engine.Protocol

	Protocol for communicating with a chess engine process.

	
abstract async play(board: chess.Board, limit: chess.engine.Limit, *, game: Optional[object] = None, info: chess.engine.Info = <Info.NONE: 0>, ponder: bool = False, draw_offered: bool = False, root_moves: Optional[Iterable[chess.Move]] = None, options: Mapping[str, Optional[Union[str, int, bool]]] = {}) → chess.engine.PlayResult

	Plays a position.

	Parameters

	
	board – The position. The entire move stack will be sent to the
engine.

	limit – An instance of chess.engine.Limit that
determines when to stop thinking.

	game – Optional. An arbitrary object that identifies the game.
Will automatically inform the engine if the object is not equal
to the previous game (e.g., ucinewgame, new).

	info – Selects which additional information to retrieve from the
engine. INFO_NONE, INFO_BASE (basic information that is
trivial to obtain), INFO_SCORE, INFO_PV,
INFO_REFUTATION, INFO_CURRLINE, INFO_ALL or any
bitwise combination. Some overhead is associated with parsing
extra information.

	ponder – Whether the engine should keep analysing in the
background even after the result has been returned.

	draw_offered – Whether the engine’s opponent has offered a draw.
Ignored by UCI engines.

	root_moves – Optional. Consider only root moves from this list.

	options – Optional. A dictionary of engine options for the
analysis. The previous configuration will be restored after the
analysis is complete. You can permanently apply a configuration
with configure().

	
class chess.engine.Limit(time: Optional[float] = None, depth: Optional[int] = None, nodes: Optional[int] = None, mate: Optional[int] = None, white_clock: Optional[float] = None, black_clock: Optional[float] = None, white_inc: Optional[float] = None, black_inc: Optional[float] = None, remaining_moves: Optional[int] = None)

	Search-termination condition.

	
time: Optional[float] = None

	Search exactly time seconds.

	
depth: Optional[int] = None

	Search depth ply only.

	
nodes: Optional[int] = None

	Search only a limited number of nodes.

	
mate: Optional[int] = None

	Search for a mate in mate moves.

	
white_clock: Optional[float] = None

	Time in seconds remaining for White.

	
black_clock: Optional[float] = None

	Time in seconds remaining for Black.

	
white_inc: Optional[float] = None

	Fisher increment for White, in seconds.

	
black_inc: Optional[float] = None

	Fisher increment for Black, in seconds.

	
remaining_moves: Optional[int] = None

	Number of moves to the next time control. If this is not set, but
white_clock and black_clock are, then it is sudden death.

	
class chess.engine.PlayResult(move: Optional[chess.Move], ponder: Optional[chess.Move], info: Optional[chess.engine.InfoDict] = None, *, draw_offered: bool = False, resigned: bool = False)

	Returned by chess.engine.Protocol.play().

	
move: Optional[chess.Move]

	The best move according to the engine, or None.

	
ponder: Optional[chess.Move]

	The response that the engine expects after move, or None.

	
info: chess.engine.InfoDict

	A dictionary of extra information
sent by the engine, if selected with the info argument of
play().

	
draw_offered: bool

	Whether the engine offered a draw before moving.

	
resigned: bool

	Whether the engine resigned.

Analysing and evaluating a position

Example:

import chess
import chess.engine

engine = chess.engine.SimpleEngine.popen_uci("/usr/bin/stockfish")

board = chess.Board()
info = engine.analyse(board, chess.engine.Limit(time=0.1))
print("Score:", info["score"])
Score: PovScore(Cp(+20), WHITE)

board = chess.Board("r1bqkbnr/p1pp1ppp/1pn5/4p3/2B1P3/5Q2/PPPP1PPP/RNB1K1NR w KQkq - 2 4")
info = engine.analyse(board, chess.engine.Limit(depth=20))
print("Score:", info["score"])
Score: PovScore(Mate(+1), WHITE)

engine.quit()

import asyncio
import chess
import chess.engine

async def main() -> None:
 transport, engine = await chess.engine.popen_uci("/usr/bin/stockfish")

 board = chess.Board()
 info = await engine.analyse(board, chess.engine.Limit(time=0.1))
 print(info["score"])
 # Score: PovScore(Cp(+20), WHITE)

 board = chess.Board("r1bqkbnr/p1pp1ppp/1pn5/4p3/2B1P3/5Q2/PPPP1PPP/RNB1K1NR w KQkq - 2 4")
 info = await engine.analyse(board, chess.engine.Limit(depth=20))
 print(info["score"])
 # Score: PovScore(Mate(+1), WHITE)

 await engine.quit()

asyncio.set_event_loop_policy(chess.engine.EventLoopPolicy())
asyncio.run(main())

	
class chess.engine.Protocol

	Protocol for communicating with a chess engine process.

	
async analyse(board: chess.Board, limit: chess.engine.Limit, *, game: object = 'None', info: chess.engine.Info = 'INFO_ALL', root_moves: Optional[Iterable[chess.Move]] = 'None', options: Mapping[str, Optional[Union[str, int, bool]]] = '{}') → chess.engine.InfoDict

	
async analyse(board: chess.Board, limit: chess.engine.Limit, *, multipv: int, game: object = 'None', info: chess.engine.Info = 'INFO_ALL', root_moves: Optional[Iterable[chess.Move]] = 'None', options: Mapping[str, Optional[Union[str, int, bool]]] = '{}') → List[chess.engine.InfoDict]

	
async analyse(board: chess.Board, limit: chess.engine.Limit, *, multipv: Optional[int] = 'None', game: object = 'None', info: chess.engine.Info = 'INFO_ALL', root_moves: Optional[Iterable[chess.Move]] = 'None', options: Mapping[str, Optional[Union[str, int, bool]]] = '{}') → Union[List[chess.engine.InfoDict], chess.engine.InfoDict]

	Analyses a position and returns a dictionary of
information.

	Parameters

	
	board – The position to analyse. The entire move stack will be
sent to the engine.

	limit – An instance of chess.engine.Limit that
determines when to stop the analysis.

	multipv – Optional. Analyse multiple root moves. Will return
a list of at most multipv dictionaries rather than just a single
info dictionary.

	game – Optional. An arbitrary object that identifies the game.
Will automatically inform the engine if the object is not equal
to the previous game (e.g., ucinewgame, new).

	info – Selects which information to retrieve from the
engine. INFO_NONE, INFO_BASE (basic information that is
trivial to obtain), INFO_SCORE, INFO_PV,
INFO_REFUTATION, INFO_CURRLINE, INFO_ALL or any
bitwise combination. Some overhead is associated with parsing
extra information.

	root_moves – Optional. Limit analysis to a list of root moves.

	options – Optional. A dictionary of engine options for the
analysis. The previous configuration will be restored after the
analysis is complete. You can permanently apply a configuration
with configure().

	
class chess.engine.InfoDict(*args, **kwargs)

	Dictionary of aggregated information sent by the engine.

Commonly used keys are: score (a PovScore),
pv (a list of Move objects), depth,
seldepth, time (in seconds), nodes, nps, multipv
(1 for the mainline).

Others: tbhits, currmove, currmovenumber, hashfull,
cpuload, refutation, currline, ebf (effective branching factor),
wdl (a PovWdl), and string.

	
class chess.engine.PovScore(relative: chess.engine.Score, turn: chess.Color)

	A relative Score and the point of view.

	
relative: chess.engine.Score

	The relative Score.

	
turn: chess.Color

	The point of view (chess.WHITE or chess.BLACK).

	
white() → chess.engine.Score

	Gets the score from White’s point of view.

	
black() → chess.engine.Score

	Gets the score from Black’s point of view.

	
pov(color: chess.Color) → chess.engine.Score

	Gets the score from the point of view of the given color.

	
is_mate() → bool

	Tests if this is a mate score.

	
wdl(*, model: Literal[sf, sf15, sf14, sf12, lichess] = 'sf', ply: int = 30) → chess.engine.PovWdl

	See wdl().

	
class chess.engine.Score

	Evaluation of a position.

The score can be Cp (centi-pawns),
Mate or MateGiven.
A positive value indicates an advantage.

There is a total order defined on centi-pawn and mate scores.

>>> from chess.engine import Cp, Mate, MateGiven
>>>
>>> Mate(-0) < Mate(-1) < Cp(-50) < Cp(200) < Mate(4) < Mate(1) < MateGiven
True

Scores can be negated to change the point of view:

>>> -Cp(20)
Cp(-20)

>>> -Mate(-4)
Mate(+4)

>>> -Mate(0)
MateGiven

	
abstract score(*, mate_score: int) → int

	
abstract score(*, mate_score: Optional[int] = 'None') → Optional[int]

	Returns the centi-pawn score as an integer or None.

You can optionally pass a large value to convert mate scores to
centi-pawn scores.

>>> Cp(-300).score()
-300
>>> Mate(5).score() is None
True
>>> Mate(5).score(mate_score=100000)
99995

	
abstract mate() → Optional[int]

	Returns the number of plies to mate, negative if we are getting
mated, or None.

Warning

This conflates Mate(0) (we lost) and MateGiven
(we won) to 0.

	
is_mate() → bool

	Tests if this is a mate score.

	
abstract wdl(*, model: Literal[sf, sf15, sf14, sf12, lichess] = 'sf', ply: int = 30) → chess.engine.Wdl

	Returns statistics for the expected outcome of this game, based on
a model, given that this score is reached at ply.

Scores have a total order, but it makes little sense to compute
the difference between two scores. For example, going from
Cp(-100) to Cp(+100) is much more significant than going
from Cp(+300) to Cp(+500). It is better to compute differences
of the expectation values for the outcome of the game (based on winning
chances and drawing chances).

>>> Cp(100).wdl().expectation() - Cp(-100).wdl().expectation()
0.379...

>>> Cp(500).wdl().expectation() - Cp(300).wdl().expectation()
0.015...

	Parameters

	
	model –
	sf, the WDL model used by the latest Stockfish
(currently sf15).

	sf15, the WDL model used by Stockfish 15.

	sf14, the WDL model used by Stockfish 14.

	sf12, the WDL model used by Stockfish 12.

	lichess, the win rate model used by Lichess.
Does not use ply, and does not consider drawing chances.

	ply – The number of half-moves played since the starting
position. Models may scale scores slightly differently based on
this. Defaults to middle game.

	
class chess.engine.PovWdl(relative: chess.engine.Wdl, turn: chess.Color)

	Relative win/draw/loss statistics and the point
of view.

Deprecated since version 1.2: Behaves like a tuple
(wdl.relative.wins, wdl.relative.draws, wdl.relative.losses)
for backwards compatibility. But it is recommended to use the provided
fields and methods instead.

	
relative: chess.engine.Wdl

	The relative Wdl.

	
turn: chess.Color

	The point of view (chess.WHITE or chess.BLACK).

	
white() → chess.engine.Wdl

	Gets the Wdl from White’s point of view.

	
black() → chess.engine.Wdl

	Gets the Wdl from Black’s point of view.

	
pov(color: chess.Color) → chess.engine.Wdl

	Gets the Wdl from the point of view of the given
color.

	
class chess.engine.Wdl(wins: int, draws: int, losses: int)

	Win/draw/loss statistics.

	
wins: int

	The number of wins.

	
draws: int

	The number of draws.

	
losses: int

	The number of losses.

	
total() → int

	Returns the total number of games. Usually, wdl reported by engines
is scaled to 1000 games.

	
winning_chance() → float

	Returns the relative frequency of wins.

	
drawing_chance() → float

	Returns the relative frequency of draws.

	
losing_chance() → float

	Returns the relative frequency of losses.

	
expectation() → float

	Returns the expectation value, where a win is valued 1, a draw is
valued 0.5, and a loss is valued 0.

Indefinite or infinite analysis

Example: Stream information from the engine and stop on an arbitrary condition.

import chess
import chess.engine

engine = chess.engine.SimpleEngine.popen_uci("/usr/bin/stockfish")

with engine.analysis(chess.Board()) as analysis:
 for info in analysis:
 print(info.get("score"), info.get("pv"))

 # Arbitrary stop condition.
 if info.get("seldepth", 0) > 20:
 break

engine.quit()

import asyncio
import chess
import chess.engine

async def main() -> None:
 transport, engine = await chess.engine.popen_uci("/usr/bin/stockfish")

 with await engine.analysis(chess.Board()) as analysis:
 async for info in analysis:
 print(info.get("score"), info.get("pv"))

 # Arbitrary stop condition.
 if info.get("seldepth", 0) > 20:
 break

 await engine.quit()

asyncio.set_event_loop_policy(chess.engine.EventLoopPolicy())
asyncio.run(main())

	
class chess.engine.Protocol

	Protocol for communicating with a chess engine process.

	
abstract async analysis(board: chess.Board, limit: Optional[chess.engine.Limit] = None, *, multipv: Optional[int] = None, game: Optional[object] = None, info: chess.engine.Info = <Info.ALL: 31>, root_moves: Optional[Iterable[chess.Move]] = None, options: Mapping[str, Optional[Union[str, int, bool]]] = {}) → chess.engine.AnalysisResult

	Starts analysing a position.

	Parameters

	
	board – The position to analyse. The entire move stack will be
sent to the engine.

	limit – Optional. An instance of chess.engine.Limit
that determines when to stop the analysis. Analysis is infinite
by default.

	multipv – Optional. Analyse multiple root moves.

	game – Optional. An arbitrary object that identifies the game.
Will automatically inform the engine if the object is not equal
to the previous game (e.g., ucinewgame, new).

	info – Selects which information to retrieve from the
engine. INFO_NONE, INFO_BASE (basic information that is
trivial to obtain), INFO_SCORE, INFO_PV,
INFO_REFUTATION, INFO_CURRLINE, INFO_ALL or any
bitwise combination. Some overhead is associated with parsing
extra information.

	root_moves – Optional. Limit analysis to a list of root moves.

	options – Optional. A dictionary of engine options for the
analysis. The previous configuration will be restored after the
analysis is complete. You can permanently apply a configuration
with configure().

Returns AnalysisResult, a handle that allows
asynchronously iterating over the information sent by the engine
and stopping the analysis at any time.

	
class chess.engine.AnalysisResult(stop: Optional[Callable[], None]] = None)

	Handle to ongoing engine analysis.
Returned by chess.engine.Protocol.analysis().

Can be used to asynchronously iterate over information sent by the engine.

Automatically stops the analysis when used as a context manager.

	
multipv: List[chess.engine.InfoDict]

	A list of dictionaries with aggregated information sent by the engine.
One item for each root move.

	
property info

	A dictionary of aggregated information sent by the engine. This is
actually an alias for multipv[0].

	
stop() → None

	Stops the analysis as soon as possible.

	
async wait() → chess.engine.BestMove

	Waits until the analysis is complete (or stopped).

	
async get() → chess.engine.InfoDict

	Waits for the next dictionary of information from the engine and
returns it.

It might be more convenient to use async for info in analysis:

	Raises

	chess.engine.AnalysisComplete if the analysis is
complete (or has been stopped) and all information has been
consumed. Use next() if you
prefer to get None instead of an exception.

	
empty() → bool

	Checks if all information has been consumed.

If the queue is empty, but the analysis is still ongoing, then further
information can become available in the future.

If the queue is not empty, then the next call to
get() will return instantly.

	
class chess.engine.BestMove(move: Optional[chess.Move], ponder: Optional[chess.Move])

	Returned by chess.engine.AnalysisResult.wait().

	
move: Optional[chess.Move]

	The best move according to the engine, or None.

	
ponder: Optional[chess.Move]

	The response that the engine expects after move, or None.

Options

configure(),
play(),
analyse() and
analysis() accept a dictionary of options.

>>> import chess.engine
>>>
>>> engine = chess.engine.SimpleEngine.popen_uci("/usr/bin/stockfish")
>>>
>>> # Check available options.
>>> engine.options["Hash"]
Option(name='Hash', type='spin', default=16, min=1, max=131072, var=[])
>>>
>>> # Set an option.
>>> engine.configure({"Hash": 32})
>>>
>>> # [...]

import asyncio
import chess.engine

async def main() -> None:
 transport, engine = await chess.engine.popen_uci("/usr/bin/stockfish")

 # Check available options.
 print(engine.options["Hash"])
 # Option(name='Hash', type='spin', default=16, min=1, max=131072, var=[])

 # Set an option.
 await engine.configure({"Hash": 32})

 # [...]

asyncio.set_event_loop_policy(chess.engine.EventLoopPolicy())
asyncio.run(main())

	
class chess.engine.Protocol

	Protocol for communicating with a chess engine process.

	
options: MutableMapping[str, Option]

	Dictionary of available options.

	
abstract async configure(options: Mapping[str, Optional[Union[str, int, bool]]]) → None

	Configures global engine options.

	Parameters

	options – A dictionary of engine options where the keys are
names of options. Do not set options
that are managed automatically
(chess.engine.Option.is_managed()).

	
class chess.engine.Option(name: str, type: str, default: Optional[Union[str, int, bool]], min: Optional[int], max: Optional[int], var: Optional[List[str]])

	Information about an available engine option.

	
name: str

	The name of the option.

	
type: str

	The type of the option.

	type

	UCI

	CECP

	value

	check

	X

	X

	True or False

	spin

	X

	X

	integer, between min and max

	combo

	X

	X

	string, one of var

	button

	X

	X

	None

	reset

	
	X

	None

	save

	
	X

	None

	string

	X

	X

	string without line breaks

	file

	
	X

	string, interpreted as the path to a file

	path

	
	X

	string, interpreted as the path to a directory

	
default: Optional[Union[str, int, bool]]

	The default value of the option.

	
min: Optional[int]

	The minimum integer value of a spin option.

	
max: Optional[int]

	The maximum integer value of a spin option.

	
var: Optional[List[str]]

	A list of allowed string values for a combo option.

	
is_managed() → bool

	Some options are managed automatically: UCI_Chess960,
UCI_Variant, MultiPV, Ponder.

Logging

Communication is logged with debug level on a logger named chess.engine.
Debug logs are useful while troubleshooting. Please also provide them
when submitting bug reports.

import logging

Enable debug logging.
logging.basicConfig(level=logging.DEBUG)

AsyncSSH

chess.engine.Protocol can also be used with
AsyncSSH [https://asyncssh.readthedocs.io/en/latest/] (since 1.16.0)
to communicate with an engine on a remote computer.

import asyncio
import asyncssh
import chess
import chess.engine

async def main() -> None:
 async with asyncssh.connect("localhost") as conn:
 channel, engine = await conn.create_subprocess(chess.engine.UciProtocol, "/usr/bin/stockfish")
 await engine.initialize()

 # Play, analyse, ...
 await engine.ping()

asyncio.run(main())

Reference

	
class chess.engine.EngineError

	Runtime error caused by a misbehaving engine or incorrect usage.

	
class chess.engine.EngineTerminatedError

	The engine process exited unexpectedly.

	
class chess.engine.AnalysisComplete

	Raised when analysis is complete, all information has been consumed, but
further information was requested.

	
async chess.engine.popen_uci(command: Union[str, List[str]], *, setpgrp: bool = False, **popen_args: Any) → Tuple[asyncio.transports.SubprocessTransport, chess.engine.UciProtocol]

	Spawns and initializes a UCI engine.

	Parameters

	
	command – Path of the engine executable, or a list including the
path and arguments.

	setpgrp – Open the engine process in a new process group. This will
stop signals (such as keyboard interrupts) from propagating from the
parent process. Defaults to False.

	popen_args – Additional arguments for
popen [https://docs.python.org/3/library/subprocess.html#popen-constructor].
Do not set stdin, stdout, bufsize or
universal_newlines.

Returns a subprocess transport and engine protocol pair.

	
async chess.engine.popen_xboard(command: Union[str, List[str]], *, setpgrp: bool = False, **popen_args: Any) → Tuple[asyncio.transports.SubprocessTransport, chess.engine.XBoardProtocol]

	Spawns and initializes an XBoard engine.

	Parameters

	
	command – Path of the engine executable, or a list including the
path and arguments.

	setpgrp – Open the engine process in a new process group. This will
stop signals (such as keyboard interrupts) from propagating from the
parent process. Defaults to False.

	popen_args – Additional arguments for
popen [https://docs.python.org/3/library/subprocess.html#popen-constructor].
Do not set stdin, stdout, bufsize or
universal_newlines.

Returns a subprocess transport and engine protocol pair.

	
class chess.engine.Protocol

	Protocol for communicating with a chess engine process.

	
id: Dict[str, str]

	Dictionary of information about the engine. Common keys are name
and author.

	
returncode: asyncio.Future[int]

	Future: Exit code of the process.

	
abstract async initialize() → None

	Initializes the engine.

	
abstract async ping() → None

	Pings the engine and waits for a response. Used to ensure the engine
is still alive and idle.

	
abstract async quit() → None

	Asks the engine to shut down.

	
class chess.engine.UciProtocol

	An implementation of the
Universal Chess Interface [https://www.chessprogramming.org/UCI]
protocol.

	
class chess.engine.XBoardProtocol

	An implementation of the
XBoard protocol [http://hgm.nubati.net/CECP.html] (CECP).

	
class chess.engine.SimpleEngine(transport: asyncio.transports.SubprocessTransport, protocol: chess.engine.Protocol, *, timeout: Optional[float] = 10.0)

	Synchronous wrapper around a transport and engine protocol pair. Provides
the same methods and attributes as chess.engine.Protocol
with blocking functions instead of coroutines.

You may not concurrently modify objects passed to any of the methods. Other
than that, SimpleEngine is thread-safe. When sending
a new command to the engine, any previous running command will be cancelled
as soon as possible.

Methods will raise asyncio.TimeoutError if an operation takes
timeout seconds longer than expected (unless timeout is None).

Automatically closes the transport when used as a context manager.

	
close() → None

	Closes the transport and the background event loop as soon as possible.

	
classmethod popen_uci(command: Union[str, List[str]], *, timeout: Optional[float] = 10.0, debug: bool = False, setpgrp: bool = False, **popen_args: Any) → chess.engine.SimpleEngine

	Spawns and initializes a UCI engine.
Returns a SimpleEngine instance.

	
classmethod popen_xboard(command: Union[str, List[str]], *, timeout: Optional[float] = 10.0, debug: bool = False, setpgrp: bool = False, **popen_args: Any) → chess.engine.SimpleEngine

	Spawns and initializes an XBoard engine.
Returns a SimpleEngine instance.

	
class chess.engine.SimpleAnalysisResult(simple_engine: chess.engine.SimpleEngine, inner: chess.engine.AnalysisResult)

	Synchronous wrapper around AnalysisResult. Returned
by chess.engine.SimpleEngine.analysis().

	
chess.engine.EventLoopPolicy() → None

	An event loop policy for thread-local event loops and child watchers.
Ensures each event loop is capable of spawning and watching subprocesses,
even when not running on the main thread.

Windows: Uses ProactorEventLoop.

Unix: Uses SelectorEventLoop. If available,
PidfdChildWatcher is used to detect subprocess
termination (Python 3.9+ on Linux 5.3+). Otherwise, the default child
watcher is used on the main thread and relatively slow eager polling
is used on all other threads.

SVG rendering

The chess.svg module renders SVG Tiny 1.2 images
(mostly for IPython/Jupyter Notebook integration).
The piece images by
Colin M.L. Burnett [https://en.wikipedia.org/wiki/User:Cburnett] are triple
licensed under the GFDL, BSD and GPL.

	
chess.svg.piece(piece: chess.Piece, size: Optional[int] = None) → str

	Renders the given chess.Piece as an SVG image.

>>> import chess
>>> import chess.svg
>>>
>>> chess.svg.piece(chess.Piece.from_symbol("R"))

[image: R]

	
chess.svg.board(board: Optional[chess.BaseBoard] = None, *, orientation: chess.Color = True, lastmove: Optional[chess.Move] = None, check: Optional[chess.Square] = None, arrows: Iterable[Union[chess.svg.Arrow, Tuple[chess.Square, chess.Square]]] = [], fill: Dict[chess.Square, str] = {}, squares: Optional[chess.IntoSquareSet] = None, size: Optional[int] = None, coordinates: bool = True, colors: Dict[str, str] = {}, flipped: bool = False, style: Optional[str] = None) → str

	Renders a board with pieces and/or selected squares as an SVG image.

	Parameters

	
	board – A chess.BaseBoard for a chessboard with pieces, or
None (the default) for a chessboard without pieces.

	orientation – The point of view, defaulting to chess.WHITE.

	lastmove – A chess.Move to be highlighted.

	check – A square to be marked indicating a check.

	arrows – A list of Arrow objects, like
[chess.svg.Arrow(chess.E2, chess.E4)], or a list of tuples, like
[(chess.E2, chess.E4)]. An arrow from a square pointing to the same
square is drawn as a circle, like [(chess.E2, chess.E2)].

	fill – A dictionary mapping squares to a colors that they should be
filled with.

	squares – A chess.SquareSet with selected squares to mark
with an X.

	size – The size of the image in pixels (e.g., 400 for a 400 by
400 board), or None (the default) for no size limit.

	coordinates – Pass False to disable the coordinate margin.

	colors – A dictionary to override default colors. Possible keys are
square light, square dark, square light lastmove,
square dark lastmove, margin, coord, arrow green,
arrow blue, arrow red, and arrow yellow. Values should look
like #ffce9e (opaque), or #15781B80 (transparent).

	flipped – Pass True to flip the board.

	style – A CSS stylesheet to include in the SVG image.

>>> import chess
>>> import chess.svg
>>>
>>> board = chess.Board("8/8/8/8/4N3/8/8/8 w - - 0 1")
>>>
>>> chess.svg.board(
... board,
... fill=dict.fromkeys(board.attacks(chess.E4), "#cc0000cc") | {chess.E4: "#00cc00cc"},
... arrows=[chess.svg.Arrow(chess.E4, chess.F6, color="#0000cccc")],
... squares=chess.SquareSet(chess.BB_DARK_SQUARES & chess.BB_FILE_B),
... size=350,
...)

[image: 8/8/8/8/4N3/8/8/8]
Deprecated since version 1.1: Use orientation with a color instead of the flipped toggle.

	
class chess.svg.Arrow(tail: chess.Square, head: chess.Square, *, color: str = 'green')

	Details of an arrow to be drawn.

	
tail: chess.Square

	Start square of the arrow.

	
head: chess.Square

	End square of the arrow.

	
color: str

	Arrow color.

	
pgn() → str

	Returns the arrow in the format used by [%csl ...] and
[%cal ...] PGN annotations, e.g., Ga1 or Ya2h2.

Colors other than red, yellow, and blue default to green.

	
classmethod from_pgn(pgn: str) → chess.svg.Arrow

	Parses an arrow from the format used by [%csl ...] and
[%cal ...] PGN annotations, e.g., Ga1 or Ya2h2.

Also allows skipping the color prefix, defaulting to green.

	Raises

	ValueError if the format is invalid.

Variants

python-chess supports several chess variants.

>>> import chess.variant
>>>
>>> board = chess.variant.GiveawayBoard()

>>> # General information about the variants.
>>> type(board).uci_variant
'giveaway'
>>> type(board).xboard_variant
'giveaway'
>>> type(board).starting_fen
'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w - - 0 1'

	Variant

	Board class

	UCI/XBoard

	Syzygy

	Standard

	chess.Board

	chess/normal

	.rtbw, .rtbz

	Suicide

	chess.variant.SuicideBoard

	suicide

	.stbw, .stbz

	Giveaway

	chess.variant.GiveawayBoard

	giveaway

	.gtbw, .gtbz

	Antichess

	chess.variant.AntichessBoard

	antichess

	.gtbw, .gtbz

	Atomic

	chess.variant.AtomicBoard

	atomic

	.atbw, .atbz

	King of the Hill

	chess.variant.KingOfTheHillBoard

	kingofthehill

	

	Racing Kings

	chess.variant.RacingKingsBoard

	racingkings

	

	Horde

	chess.variant.HordeBoard

	horde

	

	Three-check

	chess.variant.ThreeCheckBoard

	3check

	

	Crazyhouse

	chess.variant.CrazyhouseBoard

	crazyhouse

	

	
chess.variant.find_variant(name: str) → Type[chess.Board]

	Looks for a variant board class by variant name. Supports many common
aliases.

Game end

See chess.Board.is_variant_end(), is_variant_win(),
is_variant_draw(),
or is_variant_loss() for special variant end conditions
and results.

Note that if all of them return False, the game may still be over and
decided by standard conditions like is_checkmate(),
is_stalemate(),
is_insufficient_material(), move counters, repetitions,
and legitimate claims.

Chess960

Chess960 is orthogonal to all other variants.

>>> chess.Board(chess960=True)
Board('rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1', chess960=True)

See chess.BaseBoard.set_chess960_pos(),
chess960_pos(), and
from_chess960_pos() for dealing with Chess960 starting
positions.

Crazyhouse

	
class chess.variant.CrazyhousePocket(symbols: Iterable[str] = '')

	A Crazyhouse pocket with a counter for each piece type.

	
add(piece_type: int) → None

	Adds a piece of the given type to this pocket.

	
remove(piece_type: int) → None

	Removes a piece of the given type from this pocket.

	
count(piece_type: int) → int

	Returns the number of pieces of the given type in the pocket.

	
reset() → None

	Clears the pocket.

	
copy() → CrazyhousePocketT

	Returns a copy of this pocket.

	
class chess.variant.CrazyhouseBoard(fen: Optional[str] = 'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR[] w KQkq - 0 1', chess960: bool = False)

	
	
pockets = [chess.variant.CrazyhousePocket(), chess.variant.CrazyhousePocket()]

	
Pockets for each color. For example, board.pockets[chess.WHITE]
are the pocket pieces available to White.

	
legal_drop_squares() → chess.SquareSet

	Gets the squares where the side to move could legally drop a piece.
Does not check whether they actually have a suitable piece in their
pocket.

It is legal to drop a checkmate.

Returns a set of squares.

Three-check

	
class chess.variant.ThreeCheckBoard(fen: Optional[str] = 'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 3+3 0 1', chess960: bool = False)

	
	
remaining_checks = [3, 3]

	
Remaining checks until victory for each color. For example,
board.remaining_checks[chess.WHITE] == 0 implies that White has won.

UCI/XBoard

Multi-Variant Stockfish [https://github.com/ddugovic/Stockfish] and other engines have an UCI_Variant option.
XBoard engines may declare support for variants.
This is automatically managed.

>>> import chess.engine
>>>
>>> engine = chess.engine.SimpleEngine.popen_uci("stockfish-mv")
>>>
>>> board = chess.variant.RacingKingsBoard()
>>> result = engine.play(board, chess.engine.Limit(time=1.0))

Syzygy

Syzygy tablebases are available for suicide, giveaway and atomic chess.

>>> import chess.syzygy
>>> import chess.variant
>>>
>>> tables = chess.syzygy.open_tablebase("data/syzygy", VariantBoard=chess.variant.AtomicBoard)

Changelog for python-chess

New in v1.9.1

Bugfixes:

	Reject pawn capture SAN if the original file is not specified, e.g.,
d5 will no longer match cxd5.

Changes:

	Tweak handling of whitespace in PGN comments: When parsing, any leading
and trailing whitespace (beyond one space) is preserved. When joining
multiple PGN comments, they are now separated with a space instead of a
newline character. When removing annotations from comments, leftover
whitespace is avoided.

New features:

	Add model sf15 for chess.engine.Score.wdl().

New in v1.9.0

Bugfixes:

	Expand position validation to detect check conflicting with en passant
square.

New features:

	Add chess.svg.board(..., fill=...).

	Let chess.svg.board() add ASCII board as description of SVG.

	Add hint when engine process dies due to illegal instruction.

New in v1.8.0

Bugfixes:

	Fix SquareSet.issuperset() and SquareSet.issubset() by swapping
their respective implementations.

New features:

	Read and write PGN comments like [%emt 0:05:21].

New in v1.7.0

New features:

	Add new models for chess.engine.Score.wdl(): sf (the new default)
and sf14.

	Add chess.Board.piece_map().

Bugfixes:

	chess.pgn: Fix skipping with nested variations.

	chess.svg: Make check gradient compatible with QtSvg.

New in v1.6.1

Bugfixes:

	Make chess.engine.SimpleEngine.play(..., draw_offered=True) available.
Previously only added for chess.engine.Protocol.

New in v1.6.0

New features:

	Allow offering a draw to XBoard engines using
chess.engine.Protocol.play(..., draw_offered=True).

	Now detects insufficient material in Horde. Thanks @stevepapazis!

Changes:

	chess.engine.popen_engine(..., setpgrp=True) on Windows now merges
CREATE_NEW_PROCESS_GROUP into creationflags instead of overriding.
On Unix it now uses start_new_session instead of calling setpgrp in
preexec_fn.

	Declare that chess.svg produces SVG Tiny 1.2, and prepare SVG 2 forwards
compatibility.

Bugfixes:

	Fix slightly off-center pawns in chess.svg.

	Fix typing error in Python 3.10 (due to added int.bit_count).

New in v1.5.0

Bugfixes:

	Fixed typing of chess.pgn.Mainline.__reversed__(). It is now a generator,
and chess.pgn.ReverseMainline has been removed.
This is a breaking change but a required bugfix.

	Implement UCI ponderhit for consecutive calls to
chess.engine.Protocol.play(..., ponder=True). Previously, the pondering
search was always stopped and restarted.

	Provide the full move stack, not just the position, for UCI pondering.

	Fixed XBoard level in sudden death games.

	Ignore trailing space after ponder move sent by UCI engine.
Previously, such a move would be rejected.

	Prevent cancelling engine commands after they have already been cancelled or
completed. Some internals (chess.engine.BaseCommand) have been changed to
accomplish this.

New features:

	Added chess.Board.outcome().

	Implement and accept usermove feature for XBoard engines.

Special thanks to @MarkZH for many of the engine related changes in this
release!

New in v1.4.0

New features:

	Let chess.pgn.GameNode.eval() accept PGN comments like
[%eval 2.5,11], meaning 250 centipawns at depth 11.
Use chess.pgn.GameNode.eval_depth() and
chess.pgn.GameNode.set_eval(..., depth) to get and set the depth.

	Read and write PGN comments with millisecond precision like
[%clk 1:23:45.678].

Changes:

	Recover from invalid UTF-8 sent by an UCI engine, by ignoring that
(and only that) line.

New in v1.3.3

Bugfixes:

	Fixed unintended collisions and optimized chess.Piece.__hash__().

	Fixed false-positive chess.STATUS_IMPOSSIBLE_CHECK if checkers are
aligned with other king.

Changes:

	Also detect chess.STATUS_IMPOSSIBLE_CHECK if checker is aligned with
en passant square and king.

New features:

	Implemented Lichess winning chance model for chess.engine.Score:
score.wdl(model="lichess").

New in v1.3.2

Bugfixes:

	Added a new reason for board.status() to be invalid:
chess.STATUS_IMPOSSIBLE_CHECK. This detects positions where two sliding
pieces are giving check while also being aligned with the king
on the same rank, file, or diagonal. Such positions are impossible to reach,
break Stockfish, and maybe other engines.

New in v1.3.1

Bugfixes:

	chess.pgn.read_game() now properly detects variant games with Chess960
castling rights (as well as mislabeled Standard Chess960 games). Previously,
all castling moves in such games were rejected.

New in v1.3.0

Changes:

	Introduced chess.pgn.ChildNode, a subclass of chess.pgn.GameNode
for all nodes other than the root node, and converted chess.pgn.GameNode
to an abstract base class. This improves ergonomics in typed code.

The change is backwards compatible if using only documented features.
However, a notable undocumented feature is the ability to create dangling
nodes. This is no longer possible. If you have been using this for
subclassing, override GameNode.add_variation() instead of
GameNode.dangling_node(). It is now the only method that creates child
nodes.

Bugfixes:

	Removed broken weakref-based caching in chess.pgn.GameNode.board().

New features:

	Added chess.pgn.GameNode.next().

New in v1.2.2

Bugfixes:

	Fixed regression where releases were uploaded without the py.typed
marker.

New in v1.2.1

Changes:

	The primary location for the published package is now
https://pypi.org/project/chess/. Thanks to
Kristian Glass [https://github.com/doismellburning] for transferring the
namespace.

The old https://pypi.org/project/python-chess/ will remain an alias that
installs the package from the new location as a dependency (as recommended by
PEP423 [https://www.python.org/dev/peps/pep-0423/#how-to-rename-a-project]).

ModuleNotFoundError: No module named 'chess' after upgrading from
previous versions? Run pip install --force-reinstall chess
(due to https://github.com/niklasf/python-chess/issues/680).

New in v1.2.0

New features:

	Added chess.Board.ply().

	Added chess.pgn.GameNode.ply() and chess.pgn.GameNode.turn().

	Added chess.engine.PovWdl, chess.engine.Wdl, and conversions from
scores: chess.engine.PovScore.wdl(), chess.engine.Score.wdl().

	Added chess.engine.Score.score(*, mate_score: int) -> int overload.

Changes:

	The PovScore returned by chess.pgn.GameNode.eval() is now always
relative to the side to move. The ambiguity around [%eval #0] has been
resolved to Mate(-0). This makes sense, given that the authors of the
specification probably had standard chess in mind (where a game-ending move
is always a loss for the opponent). Previously, this would be parsed as
None.

	Typed chess.engine.InfoDict["wdl"] as the new chess.engine.PovWdl,
rather than Tuple[int, int, int]. The new type is backwards compatible,
but it is recommended to use its documented fields and methods instead.

	Removed chess.engine.PovScore.__str__(). String representation falls back
to __repr__.

	The en_passant parameter of chess.Board.fen() and
chess.Board.epd() is now typed as Literal["legal", "fen", "xfen"]
rather than str.

New in v1.1.0

New features:

	Added chess.svg.board(..., orientation). This is a more idiomatic way to
set the board orientation than flipped.

	Added chess.svg.Arrow.pgn() and chess.svg.Arrow.from_pgn().

Changes:

	Further relaxed chess.Board.parse_san(). Now accepts fully specified moves
like e2e4, even if that is not a pawn move, castling notation with zeros,
null moves in UCI notation, and null moves in XBoard notation.

New in v1.0.1

Bugfixes:

	chess.svg: Restored SVG Tiny compatibility by splitting colors like
#rrggbbaa into a solid color and opacity.

New in v1.0.0

See CHANGELOG-OLD.rst for changes up to v1.0.0.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Z

A

 	
 	accept() (chess.pgn.Game method)

 	(chess.pgn.GameNode method)

 	accept_subgame() (chess.pgn.GameNode method)

 	add() (chess.SquareSet method)

 	(chess.variant.CrazyhousePocket method)

 	add_directory() (chess.gaviota.PythonTablebase method)

 	(chess.syzygy.Tablebase method)

 	add_line() (chess.pgn.GameNode method)

 	add_main_variation() (chess.pgn.GameNode method)

 	
 	add_variation() (chess.pgn.GameNode method)

 	analyse() (chess.engine.Protocol method)

 	analysis() (chess.engine.Protocol method)

 	AnalysisComplete (class in chess.engine)

 	AnalysisResult (class in chess.engine)

 	Arrow (class in chess.svg)

 	arrows() (chess.pgn.GameNode method)

 	attackers() (chess.BaseBoard method)

 	attacks() (chess.BaseBoard method)

B

 	
 	BaseBoard (class in chess)

 	BaseVisitor (class in chess.pgn)

 	begin_game() (chess.pgn.BaseVisitor method)

 	begin_headers() (chess.pgn.BaseVisitor method)

 	begin_variation() (chess.pgn.BaseVisitor method)

 	BestMove (class in chess.engine)

 	between() (chess.SquareSet class method)

 	black() (chess.engine.PovScore method)

 	(chess.engine.PovWdl method)

 	
 	black_clock (chess.engine.Limit attribute)

 	black_inc (chess.engine.Limit attribute)

 	Board (class in chess)

 	board() (chess.pgn.GameNode method)

 	(in module chess.svg)

 	board_fen() (chess.BaseBoard method)

 	BoardBuilder (class in chess.pgn)

C

 	
 	can_claim_draw() (chess.Board method)

 	can_claim_fifty_moves() (chess.Board method)

 	can_claim_threefold_repetition() (chess.Board method)

 	carry_rippler() (chess.SquareSet method)

 	castling_rights (chess.Board attribute)

 	checkers() (chess.Board method)

 	CHECKMATE (chess.Termination attribute)

 	chess.A1 (built-in variable)

 	chess.B1 (built-in variable)

 	chess.BB_ALL (built-in variable)

 	chess.BB_BACKRANKS (built-in variable)

 	chess.BB_CENTER (built-in variable)

 	chess.BB_CORNERS (built-in variable)

 	chess.BB_DARK_SQUARES (built-in variable)

 	chess.BB_EMPTY (built-in variable)

 	chess.BB_FILES (built-in variable)

 	chess.BB_LIGHT_SQUARES (built-in variable)

 	chess.BB_RANKS (built-in variable)

 	chess.BB_SQUARES (built-in variable)

 	chess.BISHOP (built-in variable)

 	chess.BLACK (built-in variable)

 	chess.FILE_NAMES (built-in variable)

 	chess.G8 (built-in variable)

 	chess.H8 (built-in variable)

 	chess.KING (built-in variable)

 	chess.KNIGHT (built-in variable)

 	chess.PAWN (built-in variable)

 	chess.polyglot.POLYGLOT_RANDOM_ARRAY (built-in variable)

 	chess.QUEEN (built-in variable)

 	chess.RANK_NAMES (built-in variable)

 	
 	chess.ROOK (built-in variable)

 	chess.SQUARE_NAMES (built-in variable)

 	chess.SQUARES (built-in variable)

 	chess.WHITE (built-in variable)

 	chess960 (chess.Board attribute)

 	chess960_pos() (chess.BaseBoard method)

 	(chess.Board method)

 	ChildNode (class in chess.pgn)

 	choice() (chess.polyglot.MemoryMappedReader method)

 	clean_castling_rights() (chess.Board method)

 	clear() (chess.Board method)

 	(chess.SquareSet method)

 	clear_board() (chess.BaseBoard method)

 	(chess.Board method)

 	clear_stack() (chess.Board method)

 	clock() (chess.pgn.GameNode method)

 	close() (chess.engine.SimpleEngine method)

 	(chess.gaviota.PythonTablebase method)

 	(chess.polyglot.MemoryMappedReader method)

 	(chess.syzygy.Tablebase method)

 	color (chess.Piece attribute)

 	(chess.svg.Arrow attribute)

 	color_at() (chess.BaseBoard method)

 	comment (chess.pgn.GameNode attribute)

 	configure() (chess.engine.Protocol method)

 	copy() (chess.BaseBoard method)

 	(chess.Board method)

 	(chess.variant.CrazyhousePocket method)

 	count() (chess.variant.CrazyhousePocket method)

 	CrazyhouseBoard (class in chess.variant)

 	CrazyhousePocket (class in chess.variant)

D

 	
 	default (chess.engine.Option attribute)

 	demote() (chess.pgn.GameNode method)

 	depth (chess.engine.Limit attribute)

 	discard() (chess.SquareSet method)

 	
 	draw_offered (chess.engine.PlayResult attribute)

 	drawing_chance() (chess.engine.Wdl method)

 	draws (chess.engine.Wdl attribute)

 	drop (chess.Move attribute)

E

 	
 	empty() (chess.BaseBoard class method)

 	(chess.Board class method)

 	(chess.engine.AnalysisResult method)

 	emt() (chess.pgn.GameNode method)

 	end() (chess.pgn.ChildNode method)

 	(chess.pgn.GameNode method)

 	end_game() (chess.pgn.BaseVisitor method)

 	end_headers() (chess.pgn.BaseVisitor method)

 	end_variation() (chess.pgn.BaseVisitor method)

 	
 	EngineError (class in chess.engine)

 	EngineTerminatedError (class in chess.engine)

 	Entry (class in chess.polyglot)

 	ep_square (chess.Board attribute)

 	epd() (chess.Board method)

 	errors (chess.pgn.Game attribute)

 	eval() (chess.pgn.GameNode method)

 	eval_depth() (chess.pgn.GameNode method)

 	EventLoopPolicy() (in module chess.engine)

 	expectation() (chess.engine.Wdl method)

F

 	
 	fen() (chess.Board method)

 	FIFTY_MOVES (chess.Termination attribute)

 	FileExporter (class in chess.pgn)

 	find() (chess.polyglot.MemoryMappedReader method)

 	find_all() (chess.polyglot.MemoryMappedReader method)

 	find_move() (chess.Board method)

 	find_variant() (in module chess.variant)

 	FIVEFOLD_REPETITION (chess.Termination attribute)

 	from_board() (chess.pgn.Game class method)

 	
 	from_chess960_pos() (chess.BaseBoard class method)

 	(chess.Board class method)

 	from_epd() (chess.Board class method)

 	from_pgn() (chess.svg.Arrow class method)

 	from_square (chess.Move attribute)

 	from_square() (chess.SquareSet class method)

 	from_symbol() (chess.Piece class method)

 	from_uci() (chess.Move class method)

 	fullmove_number (chess.Board attribute)

G

 	
 	Game (class in chess.pgn)

 	game() (chess.pgn.GameNode method)

 	GameBuilder (class in chess.pgn)

 	
 	GameNode (class in chess.pgn)

 	get() (chess.engine.AnalysisResult method)

 	gives_check() (chess.Board method)

H

 	
 	halfmove_clock (chess.Board attribute)

 	handle_error() (chess.pgn.BaseVisitor method)

 	(chess.pgn.GameBuilder method)

 	has_castling_rights() (chess.Board method)

 	has_chess960_castling_rights() (chess.Board method)

 	has_insufficient_material() (chess.Board method)

 	has_kingside_castling_rights() (chess.Board method)

 	
 	has_legal_en_passant() (chess.Board method)

 	has_pseudo_legal_en_passant() (chess.Board method)

 	has_queenside_castling_rights() (chess.Board method)

 	has_variation() (chess.pgn.GameNode method)

 	head (chess.svg.Arrow attribute)

 	headers (chess.pgn.Game attribute)

 	HeadersBuilder (class in chess.pgn)

I

 	
 	id (chess.engine.Protocol attribute)

 	info (chess.engine.PlayResult attribute)

 	info() (chess.engine.AnalysisResult property)

 	InfoDict (class in chess.engine)

 	initialize() (chess.engine.Protocol method)

 	INSUFFICIENT_MATERIAL (chess.Termination attribute)

 	is_attacked_by() (chess.BaseBoard method)

 	is_capture() (chess.Board method)

 	is_castling() (chess.Board method)

 	is_check() (chess.Board method)

 	is_checkmate() (chess.Board method)

 	is_en_passant() (chess.Board method)

 	is_end() (chess.pgn.GameNode method)

 	is_fifty_moves() (chess.Board method)

 	is_fivefold_repetition() (chess.Board method)

 	is_insufficient_material() (chess.Board method)

 	is_irreversible() (chess.Board method)

 	is_kingside_castling() (chess.Board method)

 	
 	is_main_variation() (chess.pgn.GameNode method)

 	is_mainline() (chess.pgn.GameNode method)

 	is_managed() (chess.engine.Option method)

 	is_mate() (chess.engine.PovScore method)

 	(chess.engine.Score method)

 	is_pinned() (chess.BaseBoard method)

 	is_queenside_castling() (chess.Board method)

 	is_repetition() (chess.Board method)

 	is_seventyfive_moves() (chess.Board method)

 	is_stalemate() (chess.Board method)

 	is_valid() (chess.Board method)

 	is_variant_draw() (chess.Board method)

 	is_variant_end() (chess.Board method)

 	is_variant_loss() (chess.Board method)

 	is_variant_win() (chess.Board method)

 	is_zeroing() (chess.Board method)

 	isdisjoint() (chess.SquareSet method)

 	issubset() (chess.SquareSet method)

 	issuperset() (chess.SquareSet method)

K

 	
 	key (chess.polyglot.Entry attribute)

 	
 	king() (chess.BaseBoard method)

L

 	
 	lan() (chess.Board method)

 	learn (chess.polyglot.Entry attribute)

 	legal_drop_squares() (chess.variant.CrazyhouseBoard method)

 	
 	legal_moves() (chess.Board property)

 	Limit (class in chess.engine)

 	losing_chance() (chess.engine.Wdl method)

 	losses (chess.engine.Wdl attribute)

M

 	
 	mainline() (chess.pgn.GameNode method)

 	mainline_moves() (chess.pgn.GameNode method)

 	mate (chess.engine.Limit attribute)

 	mate() (chess.engine.Score method)

 	max (chess.engine.Option attribute)

 	MemoryMappedReader (class in chess.polyglot)

 	min (chess.engine.Option attribute)

 	mirror() (chess.BaseBoard method)

 	(chess.Board method)

 	(chess.SquareSet method)

 	
 	move (chess.engine.BestMove attribute)

 	(chess.engine.PlayResult attribute)

 	(chess.pgn.ChildNode attribute)

 	(chess.pgn.GameNode attribute)

 	(chess.polyglot.Entry attribute)

 	Move (class in chess)

 	move_stack (chess.Board attribute)

 	multipv (chess.engine.AnalysisResult attribute)

N

 	
 	NAG_BLUNDER (in module chess.pgn)

 	NAG_BRILLIANT_MOVE (in module chess.pgn)

 	NAG_DUBIOUS_MOVE (in module chess.pgn)

 	NAG_GOOD_MOVE (in module chess.pgn)

 	NAG_MISTAKE (in module chess.pgn)

 	NAG_SPECULATIVE_MOVE (in module chess.pgn)

 	
 	nags (chess.pgn.ChildNode attribute)

 	name (chess.engine.Option attribute)

 	NativeTablebase (class in chess.gaviota)

 	next() (chess.pgn.GameNode method)

 	nodes (chess.engine.Limit attribute)

 	null() (chess.Move class method)

O

 	
 	open_reader() (in module chess.polyglot)

 	open_tablebase() (in module chess.gaviota)

 	(in module chess.syzygy)

 	open_tablebase_native() (in module chess.gaviota)

 	
 	Option (class in chess.engine)

 	options (chess.engine.Protocol attribute)

 	Outcome (class in chess)

 	outcome() (chess.Board method)

P

 	
 	parent (chess.pgn.ChildNode attribute)

 	(chess.pgn.GameNode attribute)

 	parse_san() (chess.Board method)

 	(chess.pgn.BaseVisitor method)

 	parse_square() (in module chess)

 	parse_uci() (chess.Board method)

 	peek() (chess.Board method)

 	pgn() (chess.svg.Arrow method)

 	Piece (class in chess)

 	piece() (in module chess.svg)

 	piece_at() (chess.BaseBoard method)

 	piece_map() (chess.BaseBoard method)

 	piece_name() (in module chess)

 	piece_symbol() (in module chess)

 	piece_type (chess.Piece attribute)

 	piece_type_at() (chess.BaseBoard method)

 	pieces() (chess.BaseBoard method)

 	pin() (chess.BaseBoard method)

 	ping() (chess.engine.Protocol method)

 	play() (chess.engine.Protocol method)

 	PlayResult (class in chess.engine)

 	ply() (chess.Board method)

 	(chess.pgn.GameNode method)

 	pockets (chess.variant.CrazyhouseBoard attribute)

 	ponder (chess.engine.BestMove attribute)

 	(chess.engine.PlayResult attribute)

 	
 	pop() (chess.Board method)

 	(chess.SquareSet method)

 	popen_uci() (chess.engine.SimpleEngine class method)

 	(in module chess.engine)

 	popen_xboard() (chess.engine.SimpleEngine class method)

 	(in module chess.engine)

 	pov() (chess.engine.PovScore method)

 	(chess.engine.PovWdl method)

 	PovScore (class in chess.engine)

 	PovWdl (class in chess.engine)

 	probe_dtm() (chess.gaviota.PythonTablebase method)

 	probe_dtz() (chess.syzygy.Tablebase method)

 	probe_wdl() (chess.gaviota.PythonTablebase method)

 	(chess.syzygy.Tablebase method)

 	promote() (chess.pgn.GameNode method)

 	promote_to_main() (chess.pgn.GameNode method)

 	promoted (chess.Board attribute)

 	promotion (chess.Move attribute)

 	Protocol (class in chess.engine), [1], [2], [3], [4]

 	pseudo_legal_moves() (chess.Board property)

 	push() (chess.Board method)

 	push_san() (chess.Board method)

 	push_uci() (chess.Board method)

 	push_xboard() (chess.Board method)

 	PythonTablebase (class in chess.gaviota)

Q

 	
 	quit() (chess.engine.Protocol method)

R

 	
 	raw_move (chess.polyglot.Entry attribute)

 	ray() (chess.SquareSet class method)

 	read_game() (in module chess.pgn)

 	read_headers() (in module chess.pgn)

 	relative (chess.engine.PovScore attribute)

 	(chess.engine.PovWdl attribute)

 	remaining_checks (chess.variant.ThreeCheckBoard attribute)

 	remaining_moves (chess.engine.Limit attribute)

 	remove() (chess.SquareSet method)

 	(chess.variant.CrazyhousePocket method)

 	remove_piece_at() (chess.BaseBoard method)

 	(chess.Board method)

 	
 	remove_variation() (chess.pgn.GameNode method)

 	reset() (chess.Board method)

 	(chess.variant.CrazyhousePocket method)

 	reset_board() (chess.BaseBoard method)

 	(chess.Board method)

 	resigned (chess.engine.PlayResult attribute)

 	result() (chess.Outcome method)

 	(chess.pgn.BaseVisitor method)

 	(chess.pgn.GameBuilder method)

 	returncode (chess.engine.Protocol attribute)

 	root() (chess.Board method)

S

 	
 	san() (chess.Board method)

 	(chess.pgn.ChildNode method)

 	Score (class in chess.engine)

 	score() (chess.engine.Score method)

 	set_arrows() (chess.pgn.GameNode method)

 	set_board_fen() (chess.BaseBoard method)

 	(chess.Board method)

 	set_castling_fen() (chess.Board method)

 	set_chess960_pos() (chess.BaseBoard method)

 	(chess.Board method)

 	set_clock() (chess.pgn.GameNode method)

 	set_emt() (chess.pgn.GameNode method)

 	set_epd() (chess.Board method)

 	set_eval() (chess.pgn.GameNode method)

 	set_fen() (chess.Board method)

 	set_piece_at() (chess.BaseBoard method)

 	(chess.Board method)

 	set_piece_map() (chess.BaseBoard method)

 	(chess.Board method)

 	setup() (chess.pgn.Game method)

 	
 	SEVENTYFIVE_MOVES (chess.Termination attribute)

 	SimpleAnalysisResult (class in chess.engine)

 	SimpleEngine (class in chess.engine)

 	skip_game() (in module chess.pgn)

 	SkipVisitor (class in chess.pgn)

 	square() (in module chess)

 	square_distance() (in module chess)

 	square_file() (in module chess)

 	square_mirror() (in module chess)

 	square_name() (in module chess)

 	square_rank() (in module chess)

 	SquareSet (class in chess)

 	STALEMATE (chess.Termination attribute)

 	STARTING_BOARD_FEN (in module chess)

 	starting_comment (chess.pgn.ChildNode attribute)

 	STARTING_FEN (in module chess)

 	starts_variation() (chess.pgn.GameNode method)

 	status() (chess.Board method)

 	stop() (chess.engine.AnalysisResult method)

 	StringExporter (class in chess.pgn)

 	symbol() (chess.Piece method)

T

 	
 	Tablebase (class in chess.syzygy)

 	tail (chess.svg.Arrow attribute)

 	termination (chess.Outcome attribute)

 	Termination (class in chess)

 	ThreeCheckBoard (class in chess.variant)

 	THREEFOLD_REPETITION (chess.Termination attribute)

 	time (chess.engine.Limit attribute)

 	to_square (chess.Move attribute)

 	
 	tolist() (chess.SquareSet method)

 	total() (chess.engine.Wdl method)

 	transform() (chess.BaseBoard method)

 	(chess.Board method)

 	turn (chess.Board attribute)

 	(chess.engine.PovScore attribute)

 	(chess.engine.PovWdl attribute)

 	turn() (chess.pgn.GameNode method)

 	type (chess.engine.Option attribute)

U

 	
 	uci() (chess.Board method)

 	(chess.Move method)

 	(chess.pgn.ChildNode method)

 	
 	UciProtocol (class in chess.engine)

 	unicode() (chess.BaseBoard method)

 	unicode_symbol() (chess.Piece method)

V

 	
 	var (chess.engine.Option attribute)

 	VARIANT_DRAW (chess.Termination attribute)

 	VARIANT_LOSS (chess.Termination attribute)

 	VARIANT_WIN (chess.Termination attribute)

 	variation() (chess.pgn.GameNode method)

 	variation_san() (chess.Board method)

 	
 	variations (chess.pgn.GameNode attribute)

 	visit_board() (chess.pgn.BaseVisitor method)

 	visit_comment() (chess.pgn.BaseVisitor method)

 	visit_header() (chess.pgn.BaseVisitor method)

 	visit_move() (chess.pgn.BaseVisitor method)

 	visit_nag() (chess.pgn.BaseVisitor method)

 	visit_result() (chess.pgn.BaseVisitor method)

W

 	
 	wait() (chess.engine.AnalysisResult method)

 	Wdl (class in chess.engine)

 	wdl() (chess.engine.PovScore method)

 	(chess.engine.Score method)

 	weight (chess.polyglot.Entry attribute)

 	weighted_choice() (chess.polyglot.MemoryMappedReader method)

 	white() (chess.engine.PovScore method)

 	(chess.engine.PovWdl method)

 	
 	white_clock (chess.engine.Limit attribute)

 	white_inc (chess.engine.Limit attribute)

 	winner (chess.Outcome attribute)

 	winning_chance() (chess.engine.Wdl method)

 	wins (chess.engine.Wdl attribute)

 	without_tag_roster() (chess.pgn.Game class method)

X

 	
 	XBoardProtocol (class in chess.engine)

Z

 	
 	zobrist_hash() (in module chess.polyglot)

 _images/RNB1K1NR&lastmove=h5f7&check=e8.png
in]| =g
g
< 2 4
A g <]
=]
o= <
g

in) =g

AN AL N A

_images/clente-chess.png

_images/crazyara.png

_images/jcchess.png

_images/maia.png

nav.xhtml

 Table of Contents

 		
 python-chess: a chess library for Python

 		
 Core

 		
 Colors

 		
 Piece types

 		
 Squares

 		
 Pieces

 		
 Moves

 		
 Board

 		
 Outcome

 		
 Square sets

 		
 PGN parsing and writing

 		
 Parsing

 		
 Writing

 		
 Game model

 		
 Visitors

 		
 NAGs

 		
 Skimming

 		
 Polyglot opening book reading

 		
 Gaviota endgame tablebase probing

 		
 libgtb

 		
 Syzygy endgame tablebase probing

 		
 UCI/XBoard engine communication

 		
 Playing

 		
 Analysing and evaluating a position

 		
 Indefinite or infinite analysis

 		
 Options

 		
 Logging

 		
 AsyncSSH

 		
 Reference

 		
 SVG rendering

 		
 Variants

 		
 Game end

 		
 Chess960

 		
 Crazyhouse

 		
 Three-check

 		
 UCI/XBoard

 		
 Syzygy

 		
 Changelog for python-chess

 		
 New in v1.9.1

 		
 New in v1.9.0

 		
 New in v1.8.0

 		
 New in v1.7.0

 		
 New in v1.6.1

 		
 New in v1.6.0

 		
 New in v1.5.0

 		
 New in v1.4.0

 		
 New in v1.3.3

 		
 New in v1.3.2

 		
 New in v1.3.1

 		
 New in v1.3.0

 		
 New in v1.2.2

 		
 New in v1.2.1

 		
 New in v1.2.0

 		
 New in v1.1.0

 		
 New in v1.0.1

 		
 New in v1.0.0

_images/pettingzoo.png

_images/syzygy.png

_static/minus.png

_static/plus.png

_static/file.png

