

 Navigation

 	
 index

 	
 next |

 	python-chess 0.8.3 documentation

python-chess: a pure Python chess library

[image: https://travis-ci.org/niklasf/python-chess.svg?branch=master]
 [https://travis-ci.org/niklasf/python-chess][image: https://coveralls.io/repos/niklasf/python-chess/badge.png]
 [https://coveralls.io/r/niklasf/python-chess][image: https://landscape.io/github/niklasf/python-chess/master/landscape.png]
 [https://landscape.io/github/niklasf/python-chess/master]
 [https://pypi.python.org/pypi/python-chess]
Introduction

This is the scholars mate in python-chess:

>>> import chess

>>> board = chess.Board()

>>> board.push_san("e4")
Move.from_uci('e2e4')
>>> board.push_san("e5")
Move.from_uci('e7e5')
>>> board.push_san("Qh5")
Move.from_uci('d1h5')
>>> board.push_san("Nc6")
Move.from_uci('b8c6')
>>> board.push_san("Bc4")
Move.from_uci('f1c4')
>>> board.push_san("Nf6")
Move.from_uci('g8f6')
>>> board.push_san("Qxf7")
Move.from_uci('h5f7')

>>> board.is_checkmate()
True

Documentation

[image: https://readthedocs.org/projects/python-chess/badge/?version=latest]
 [https://python-chess.readthedocs.org/en/latest/]https://python-chess.readthedocs.org/en/latest/

Features

	Supports Python 2.7 and Python 3.

>>> # Python 2 compability for the following examples.
>>> from __future__ import print_function

	Legal move generator and move validation. This includes all castling
rules and en-passant captures.

>>> chess.Move.from_uci("a8a1") in board.legal_moves
False

	Make and unmake moves.

>>> Qf7 = board.pop() # Unmake last move (Qf7#)
>>> Qf7
Move.from_uci('h5f7')

>>> board.push(Qf7) # Restore

	Show a simple ASCII board.

>>> print(board)
r . b q k b . r
p p p p . Q p p
. . n . . n . .
. . . . p . . .
. . B . P . . .
.
P P P P . P P P
R N B . K . N R

	Detects checkmates, stalemates and draws by insufficient material.

>>> board.is_stalemate()
False
>>> board.is_insufficient_material()
False
>>> board.is_game_over()
True
>>> board.halfmove_clock
0

	Detects repetitions. Has a half move clock.

>>> board.can_claim_threefold_repetition()
False
>>> board.halfmove_clock
0
>>> board.can_claim_fifty_moves()
False
>>> board.can_claim_draw()
False

With the new rules from July 2014 a game ends drawn (even without a claim)
once a fivefold repetition occurs or if there are 75 moves without a pawn
push or capture. Other ways of ending a game take precedence.

>>> board.is_fivefold_repetition()
False
>>> board.is_seventyfive_moves()
False

	Detects checks and attacks.

>>> board.is_check()
True
>>> board.is_attacked_by(chess.WHITE, chess.E8)
True

>>> attackers = board.attackers(chess.WHITE, chess.F3)
>>> attackers
SquareSet(0b100000001000000)
>>> chess.G2 in attackers
True

	Parses and creates SAN representation of moves.

>>> board = chess.Board()
>>> board.san(chess.Move(chess.E2, chess.E4))
'e4'

	Parses and creates FENs.

>>> board.fen()
'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1'
>>> board = chess.Board("8/8/8/2k5/4K3/8/8/8 w - - 4 45")
>>> board.piece_at(chess.C5)
Piece.from_symbol('k')

	Parses and creates EPDs.

>>> board = chess.Board()
>>> board.epd(bm=chess.Move.from_uci("d2d4"))
'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - bm d4;'

>>> ops = board.set_epd("1k1r4/pp1b1R2/3q2pp/4p3/2B5/4Q3/PPP2B2/2K5 b - - bm Qd1+; id \"BK.01\";")
>>> ops == {'bm': chess.Move.from_uci('d6d1'), 'id': 'BK.01'}
True

	Read Polyglot opening books.

>>> import chess.polyglot

>>> book = chess.polyglot.open_reader("data/opening-books/performance.bin")
>>> board = chess.Board()
>>> first_entry = next(book.get_entries_for_position(board))
>>> first_entry.move()
Move.from_uci('e2e4')
>>> first_entry.learn
0
>>> first_entry.weight
1

>>> book.close()

	Read and write PGNs. Supports headers, comments, NAGs and a tree of
variations.

>>> import chess.pgn

>>> pgn = open("data/games/molinari-bordais-1979.pgn")
>>> first_game = chess.pgn.read_game(pgn)
>>> pgn.close()

>>> first_game.headers["White"]
'Molinari'
>>> first_game.headers["Black"]
'Bordais'

>>> # Iterate through the mainline of this embarrasingly short game.
>>> node = first_game
>>> while node.variations:
... next_node = node.variation(0)
... print(node.board().san(next_node.move))
... node = next_node
e4
c5
c4
Nc6
Ne2
Nf6
Nbc3
Nb4
g3
Nd3#

>>> first_game.headers["Result"]
'0-1'

	Probe Syzygy endgame tablebases.

>>> import chess.syzygy

>>> tablebases = chess.syzygy.Tablebases("data/syzygy")

>>> # Black to move is losing in 53 half moves (distance to zero) in this
>>> # KNBvK endgame.
>>> board = chess.Board("8/2K5/4B3/3N4/8/8/4k3/8 b - - 0 1")
>>> tablebases.probe_dtz(board)
-53

>>> tablebases.close()

	Communicate with an UCI engine.

>>> import chess.uci
>>> import time

>>> engine = chess.uci.popen_engine("stockfish")
>>> engine.uci()
>>> engine.author
'Tord Romstad, Marco Costalba and Joona Kiiski'

>>> # Synchronous mode.
>>> board = chess.Board("1k1r4/pp1b1R2/3q2pp/4p3/2B5/4Q3/PPP2B2/2K5 b - - 0 1")
>>> engine.position(board)
>>> engine.go(movetime=2000) # Gets tuple of bestmove and ponder move.
BestMove(bestmove=Move.from_uci('d6d1'), ponder=Move.from_uci('c1d1'))

>>> # Synchronous communication, but search in background.
>>> engine.go(infinite=True)
>>> time.sleep(2)
>>> engine.stop()
BestMove(bestmove=Move.from_uci('d6d1'), ponder=Move.from_uci('c1d1'))

>>> # Asynchronous mode.
>>> def callback(command):
... bestmove, ponder = command.result()
... assert bestmove == chess.Move.from_uci('d6d1')
...
>>> command = engine.go(movetime=2000, async_callback=callback)
>>> command.done()
False
>>> command.result()
BestMove(bestmove=Move.from_uci('d6d1'), ponder=Move.from_uci('c1d1'))
>>> command.done()
True

>>> # Quit.
>>> engine.quit()
0

Peformance

python-chess is not intended to be used by serious chess engines where
performance is critical. The goal is rather to create a simple and relatively
highlevel library.

You can install the gmpy2 or gmpy (https://code.google.com/p/gmpy/) modules
in order to get a slight performance boost on basic operations like bit scans
and population counts.

python-chess will only ever import very basic general (non-chess-related)
operations from native libraries. All logic is pure Python. There will always
be pure Python fallbacks.

Installing

	With pip:

sudo pip install python-chess

	From current source code:

python setup.py sdist
sudo python setup.py install

Featured projects

If you like, let me know if you are creating something intresting with
python-chess, for example:

	a stand alone chess computer based on DGT board - http://www.picochess.org/

	a cross platform chess GUI - https://asdfjkl.github.io/jerry/

	a website to probe Syzygy endgame tablebases - https://syzygy-tables.info/

	extracting reasoning from chess engines - https://github.com/pcattori/deep-blue-talks

License

python-chess is licensed under the GPL3. See the LICENSE file for the
full copyright and license information.

Thanks to the developers of http://chessx.sourceforge.net/. Some of the core
bitboard move generation parts are ported from there.

Thanks to Ronald de Man for his Syzygy endgame tablebases
(https://github.com/syzygy1/tb). The probing code in
python-chess is very directly ported from his C probing code.

Contents

	Changelog for python-chess
	New in v0.8.3

	New in v0.8.2

	New in v0.8.1

	New in v0.8.0

	New in v0.7.0

	New in v0.6.0

	New in v0.5.0

	New in v0.4.2

	New in v0.4.1

	New in v0.4.0

	New in v0.3.1

	New in v0.3.0

	New in v0.2.0

	New in v0.1.0

	New in v0.0.4

	Pre v0.0.4

	Core
	Colors

	Piece types

	Castling rights

	Squares

	Pieces

	Moves

	Board

	PGN parsing and writing
	Game model

	Parsing

	Writing

	NAGs

	Polyglot opening book reading

	Syzygy endgame tablebase probing

	UCI engine communication
	UCI commands

	Asynchronous communication

	Info handler

	Options

Indices and tables

	Index

	Search Page

 Copyright 2014-2015, Niklas Fiekas.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python-chess 0.8.3 documentation

Changelog for python-chess

This project is pretty young and maturing only slowly. At the current stage it
is more important to get things right, than to be consistent with previous
versions. Use this changelog to see what changed in a new release, because this
might include API breaking changes.

New in v0.8.3

Bugfixes:

	The initial move number in PGNs was missing, if black was to move in the
starting position. Thanks to Jürgen Précour for reporting.

	Detect more impossible en-passant squares in Board.status(). There already
was a requirement for a pawn on the fifth rank. Now the sixth and seventh
rank must be empty, additionally. We do not do further retrograde analysis,
because these are the only cases affecting move generation.

New in v0.8.2

Bugfixes:

	pgn.Game.setup() with the standard starting position was failing when the
standard starting position was already set. Thanks to Jordan Bray for
reporting this.

Optimizations:

	Remove bswap() from Syzygy decompression hot path. Directly read integers
with the correct endianness.

New in v0.8.1

	Fixed pondering mode in uci module. For example ponderhit() was blocking
indefinitely. Thanks to Valeriy Huz for reporting this.

	Patch by Richard C. Gerkin: Moved searchmoves to the end of the UCI go
command, where it will not cause other command parameters to be ignored.

	Added missing check or checkmate suffix to castling SANs, e.g. O-O-O#.

	Fixed off-by-one error in polyglot opening book binary search. This would
not have caused problems for real opening books.

	Fixed Python 3 support for reverse polyglot opening book iteration.

	Bestmoves may be literally (none) in UCI protocol, for example in
checkmate positions. Fix parser and return None as the bestmove in this
case.

	Fixed spelling of repetition (was repitition).
can_claim_threefold_repetition() and is_fivefold_repetition() are the
affected method names. Aliases are there for now, but will be removed in the
next release. Thanks to Jimmy Patrick for reporting this.

	Added SquareSet.__reversed__().

	Use containerized tests on Travis CI, test against Stockfish 6, improved
test coverage amd various minor clean-ups.

New in v0.8.0

	Implement Syzygy endgame tablebase probing.
https://syzygy-tables.info [https://syzygy-tables.info/apidoc?fen=6N1/5KR1/2n5/8/8/8/2n5/1k6%20w%20-%20-%200%201]
is an example project that provides a public API using the new features.

	The interface for aynchronous UCI command has changed to mimic
concurrent.futures. is_done() is now just done(). Callbacks will
receive the command object as a single argument instead of the result.
The result property and wait() have been removed in favor of a
synchronously waiting result() method.

	The result of the stop and go UCI commands are now named tuples (instead
of just normal tuples).

	Add alias Board for Bitboard.

	Fixed race condition during UCI engine startup. Lines received during engine
startup sometimes needed to be processed before the Engine object was fully
initialized.

New in v0.7.0

	Implement UCI engine communication.

	Patch by Matthew Lai: Add caching for gameNode.board().

New in v0.6.0

	If there are comments in a game before the first move, these are now assigned
to Game.comment instead of Game.starting_comment. Game.starting_comment
is ignored from now on. Game.starts_variation() is no longer true.
The first child node of a game can no longer have a starting comment.
It is possible to have a game with Game.comment set, that is otherwise
completely empty.

	Fix export of games with variations. Previously the moves were exported in
an unusual (i.e. wrong) order.

	Install gmpy2 or gmpy if you want to use slightly faster binary
operations.

	Ignore superfluous variation opening brackets in PGN files.

	Add GameNode.san().

	Remove sparse_pop_count(). Just use pop_count().

	Remove next_bit(). Now use bit_scan().

New in v0.5.0

	PGN parsing is now more robust: read_game() ignores invalid tokens.
Still exceptions are going to be thrown on illegal or ambiguous moves, but
this behaviour can be changed by passing an error_handler argument.

>>> # Raises ValueError:
>>> game = chess.pgn.read_game(file_with_illegal_moves)

>>> # Silently ignores errors and continues parsing:
>>> game = chess.pgn.read_game(file_with_illegal_moves, None)

>>> # Logs the error, continues parsing:
>>> game = chess.pgn.read_game(file_with_illegal_moves, logger.exception)

If there are too many closing brackets this is now ignored.

Castling moves like 0-0 (with zeros) are now accepted in PGNs.
The Bitboard.parse_san() method remains strict as always, though.

Previously the parser was strictly following the PGN spefification in that
empty lines terminate a game. So a game like

[Event "?"]

{ Starting comment block }

1. e4 e5 2. Nf3 Nf6 *

would have ended directly after the starting comment. To avoid this, the
parser will now look ahead until it finds at least one move or a termination
marker like *, 1-0, 1/2-1/2 or 0-1.

	Introduce a new function scan_headers() to quickly scan a PGN file for
headers without having to parse the full games.

	Minor testcoverage improvements.

New in v0.4.2

	Fix bug where pawn_moves_from() and consequently is_legal() weren’t
handling en-passant correctly. Thanks to Norbert Naskov for reporting.

New in v0.4.1

	Fix is_fivefold_repitition(): The new fivefold repitition rule requires
the repititions to occur on alternating consecutive moves.

	Minor testing related improvements: Close PGN files, allow running via
setuptools.

	Add recently introduced features to README.

New in v0.4.0

	Introduce can_claim_draw(), can_claim_fifty_moves() and
can_claim_threefold_repitition().

	Since the first of July 2014 a game is also over (even without claim by one
of the players) if there were 75 moves without a pawn move or capture or
a fivefold repitition. Let is_game_over() respect that. Introduce
is_seventyfive_moves() and is_fivefold_repitition(). Other means of
ending a game take precedence.

	Threefold repitition checking requires efficient hashing of positions
to build the table. So performance improvements were needed there. The
default polyglot compatible zobrist hashes are now built incrementally.

	Fix low level rotation operations l90(), l45() and r45(). There was
no problem in core because correct versions of the functions were inlined.

	Fix equality and inequality operators for Bitboard, Move and Piece.
Also make them robust against comparisons with incompatible types.

	Provide equality and inequality operators for SquareSet and
polyglot.Entry.

	Fix return values of incremental arithmetical operations for SquareSet.

	Make polyglot.Entry a collections.namedtuple.

	Determine and improve test coverage.

	Minor coding style fixes.

New in v0.3.1

	Bitboard.status() now correctly detects STATUS_INVALID_EP_SQUARE,
instead of errors or false reports.

	Polyglot opening book reader now correctly handles knight underpromotions.

	Minor coding style fixes, including removal of unused imports.

New in v0.3.0

	Rename property half_moves of Bitboard to halfmove_clock.

	Rename property ply of Bitboard to fullmove_number.

	Let PGN parser handle symbols like !, ?, !? and so on by converting
them to NAGs.

	Add a human readable string representation for Bitboards.

>>> print(chess.Bitboard())
r n b q k b n r
p p p p p p p p
.
.
.
.
P P P P P P P P
R N B Q K B N R

	Various documentation improvements.

New in v0.2.0

	Implement PGN parsing and writing.

	Hugely improve test coverage and use Travis CI for continuous integration and
testing.

	Create an API documentation.

	Improve Polyglot opening-book handling.

New in v0.1.0

Apply the lessons learned from the previous releases, redesign the API and
implement it in pure Python.

New in v0.0.4

Implement the basics in C++ and provide bindings for Python. Obviously
performance was a lot better - but at the expense of having to compile
code for the target platform.

Pre v0.0.4

First experiments with a way too slow pure Python API, creating way too many
objects for basic operations.

 Copyright 2014-2015, Niklas Fiekas.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python-chess 0.8.3 documentation

Core

Colors

Constants for the side to move or the color of a piece.

	
chess.WHITE = 0

	

	
chess.BLACK = 1

	

You can get the opposite color using color ^ 1.

Piece types

	
chess.NONE = 0

	

	
chess.PAWN

	

	
chess.KNIGHT

	

	
chess.BISHOP

	

	
chess.ROOK

	

	
chess.QUEEN

	

	
chess.KING

	

Castling rights

The castling flags

	
chess.CASTLING_NONE = 0

	

	
chess.CASTLING_WHITE_KINGSIDE

	

	
chess.CASTLING_BLACK_KINGSIDE

	

	
chess.CASTLING_WHITE_QUEENSIDE

	

	
chess.CASTLING_BLACK_QUEENSIDE

	

can be combined bitwise.

	
chess.CASTLING_WHITE = CASTLING_WHITE_QUEENSIDE | CASTLING_WHITE_KINGSIDE

	

	
chess.CASTLING_BLACK = CASTLING_BLACK_QUEENSIDE | CASTLING_BLACK_KINGSIDE

	

	
chess.CASTLING = CASTLING_WHITE | CASTLING_BLACK

	

Squares

	
chess.A1 = 0

	

	
chess.B1 = 1

	

and so on to

	
chess.H8 = 63

	

	
chess.SQUARES = [A1, B1, ..., G8, H8]

	

	
chess.SQUARE_NAMES = ['a1', 'b1', ..., 'g8', 'h8']

	

	
chess.file_index(square)

	Gets the file index of square where 0 is the a file.

	
chess.FILE_NAMES = ['a', 'b', ..., 'g', 'h']

	

	
chess.rank_index(square)

	Gets the rank index of the square where 0 is the first rank.

Pieces

	
class chess.Piece(piece_type, color)

	A piece with type and color.

	
piece_type

	The piece type.

	
color

	The piece color.

	
symbol()

	Gets the symbol P, N, B, R, Q or K for white pieces or the
lower-case variants for the black pieces.

	
classmethod from_symbol(symbol)

	Creates a piece instance from a piece symbol.

Raises ValueError if the symbol is invalid.

Moves

	
class chess.Move(from_square, to_square, promotion=0)

	Represents a move from a square to a square and possibly the promotion piece
type.

Castling moves are identified only by the movement of the king.

Null moves are supported.

	
from_square

	The source square.

	
to_square

	The target square.

	
promotion

	The promotion piece type.

	
uci()

	Gets an UCI string for the move.

For example a move from A7 to A8 would be a7a8 or a7a8q if it is
a promotion to a queen. The UCI representatin of null moves is 0000.

	
classmethod from_uci(uci)

	Parses an UCI string.

Raises ValueError if the UCI string is invalid.

	
classmethod null()

	Gets a null move.

A null move just passes the turn to the other side (and possibly
forfeits en-passant capturing). Null moves evaluate to False in
boolean contexts.

>>> bool(chess.Move.null())
False

Board

	
chess.STARTING_FEN = 'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1'

	The FEN notation of the standard chess starting position.

	
class chess.Board(fen=None)

	A bitboard and additional information representing a position.

Provides move generation, validation, parsing, attack generation,
game end detection, move counters and the capability to make and unmake
moves.

The bitboard is initialized to the starting position, unless otherwise
specified in the optional fen argument.

	
turn

	The side to move.

	
castling_rights

	Bitmask of castling rights.

	
ep_square

	The potential en-passant square on the third or sixth rank or 0. It
does not matter if en-passant would actually be possible on the next
move.

	
fullmove_number

	Counts move pairs. Starts at 1 and is incremented after every move
of the black side.

	
halfmove_clock

	The number of half moves since the last capture or pawn move.

	
pseudo_legal_moves = PseudoLegalMoveGenerator(self)

	A dynamic list of pseudo legal moves.

Pseudo legal moves might leave or put the king in check, but are
otherwise valid. Null moves are not pseudo legal. Castling moves are
only included if they are completely legal.

For performance moves are generated on the fly and only when nescessary.
The following operations do not just generate everything but map to
more efficient methods.

>>> len(board.pseudo_legal_moves)
20

>>> bool(board.pseudo_legal_moves)
True

>>> move in board.pseudo_legal_moves
True

	
legal_moves = LegalMoveGenerator(self)

	A dynamic list of completely legal moves, much like the pseudo legal
move list.

	
reset()

	Restores the starting position.

	
clear()

	Clears the board.

Resets move stacks and move counters. The side to move is white. There
are no rooks or kings, so castling is not allowed.

In order to be in a valid status() at least kings need to be put on
the board. This is required for move generation and validation to work
properly.

	
piece_at(square)

	Gets the piece at the given square.

	
piece_type_at(square)

	Gets the piece type at the given square.

	
remove_piece_at(square)

	Removes a piece from the given square if present.

	
set_piece_at(square, piece)

	Sets a piece at the given square. An existing piece is replaced.

	
is_attacked_by(color, square)

	Checks if the given side attacks the given square. Pinned pieces still
count as attackers.

	
attackers(color, square)

	Gets a set of attackers of the given color for the given square.

Returns a set of squares.

	
is_check()

	Checks if the current side to move is in check.

	
is_into_check(move)

	Checks if the given move would move would leave the king in check or
put it into check.

	
was_into_check()

	Checks if the king of the other side is attacked. Such a position is not
valid and could only be reached by an illegal move.

	
is_game_over()

	Checks if the game is over due to checkmate, stalemate, insufficient
mating material, the seventyfive-move rule or fivefold repetition.

	
is_checkmate()

	Checks if the current position is a checkmate.

	
is_stalemate()

	Checks if the current position is a stalemate.

	
is_insufficient_material()

	Checks for a draw due to insufficient mating material.

	
is_seventyfive_moves()

	Since the first of July 2014 a game is automatically drawn (without
a claim by one of the players) if the half move clock since a capture
or pawn move is equal to or grather than 150. Other means to end a game
take precedence.

	
is_fivefold_repetition()

	Since the first of July 2014 a game is automatically drawn (without
a claim by one of the players) if a position occurs for the fifth time
on consecutive alternating moves.

	
is_fivefold_repitition()

	Since the first of July 2014 a game is automatically drawn (without
a claim by one of the players) if a position occurs for the fifth time
on consecutive alternating moves.

	
can_claim_draw()

	Checks if the side to move can claim a draw by the fifty-move rule or
by threefold repetition.

	
can_claim_fifty_moves()

	Draw by the fifty-move rule can be claimed once the clock of halfmoves
since the last capture or pawn move becomes equal or greater to 100
and the side to move still has a legal move they can make.

	
can_claim_threefold_repetition()

	Draw by threefold repetition can be claimed if the position on the
board occured for the third time or if such a repetition is reached
with one of the possible legal moves.

	
can_claim_threefold_repitition()

	Draw by threefold repetition can be claimed if the position on the
board occured for the third time or if such a repetition is reached
with one of the possible legal moves.

	
push(move)

	Updates the position with the given move and puts it onto a stack.

Null moves just increment the move counters, switch turns and forfeit
en passant capturing.

No validation is performed. For performance moves are assumed to be at
least pseudo legal. Otherwise there is no guarantee that the previous
board state can be restored. To check it yourself you can use:

>>> move in board.pseudo_legal_moves
True

	
pop()

	Restores the previous position and returns the last move from the stack.

	
peek()

	Gets the last move from the move stack.

	
set_epd(epd)

	Parses the given EPD string and uses it to set the position.

If present the hmvc and the fmvn are used to set the half move
clock and the fullmove number. Otherwise 0 and 1 are used.

Returns a dictionary of parsed operations. Values can be strings,
integers, floats or move objects.

Raises ValueError if the EPD string is invalid.

	
epd(**operations)

	Gets an EPD representation of the current position.

EPD operations can be given as keyword arguments. Supported operands
are strings, integers, floats and moves. All other operands are
converted to strings.

hmvc and fmvc are not included by default. You can use:

>>> board.epd(hmvc=board.halfmove_clock, fmvc=board.fullmove_number)
'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - hmvc 0; fmvc 1;'

	
set_fen(fen)

	Parses a FEN and sets the position from it.

Rasies ValueError if the FEN string is invalid.

	
fen()

	Gets the FEN representation of the position.

	
parse_san(san)

	Uses the current position as the context to parse a move in standard
algebraic notation and return the corresponding move object.

The returned move is guaranteed to be either legal or a null move.

Raises ValueError if the SAN is invalid or ambigous.

	
push_san(san)

	Parses a move in standard algebraic notation, makes the move and puts
it on the the move stack.

Raises ValueError if neither legal nor a null move.

Returns the move.

	
san(move)

	Gets the standard algebraic notation of the given move in the context of
the current position.

There is no validation. It is only guaranteed to work if the move is
legal or a null move.

	
status()

	Gets a bitmask of possible problems with the position.
Move making, generation and validation are only guaranteed to work on
a completely valid board.

	
zobrist_hash(array=None)

	Returns a Zobrist hash of the current position.

A zobrist hash is an exclusive or of pseudo random values picked from
an array. Which values are picked is decided by features of the
position, such as piece positions, castling rights and en-passant
squares. For this implementation an array of 781 values is required.

The default behaviour is to use values from POLYGLOT_RANDOM_ARRAY,
which makes for hashes compatible with polyglot opening books.

 Copyright 2014-2015, Niklas Fiekas.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python-chess 0.8.3 documentation

PGN parsing and writing

Game model

Games are represented as a tree of moves. Each GameNode can have extra
information such as comments. The root node of a game
(Game extends GameNode) also holds general information, such as game
headers.

	
class chess.pgn.Game

	The root node of a game with extra information such as headers and the
starting position.

By default the following 7 headers are provided in an ordered dictionary:

>>> game = chess.pgn.Game()
>>> game.headers["Event"]
'?'
>>> game.headers["Site"]
'?'
>>> game.headers["Date"]
'????.??.??'
>>> game.headers["Round"]
'?'
>>> game.headers["White"]
'?'
>>> game.headers["Black"]
'?'
>>> game.headers["Result"]
'*'

Also has all the other properties and methods of GameNode.

	
headers

	A collections.OrderedDict() of game headers.

	
board()

	Gets the starting position of the game as a bitboard.

Unless the SetUp and FEN header tags are set this is the default
starting position.

	
setup(board)

	Setup a specific starting position. This sets (or resets) the SetUp
and FEN header tags.

	
class chess.pgn.GameNode

	
	
parent

	The parent node or None if this is the root node of the game.

	
move

	The move leading to this node or None if this is the root node of the
game.

	
nags = set()

	A set of NAGs as integers. NAGs always go behind a move, so the root
node of the game can have none.

	
comment = ''

	A comment that goes behind the move leading to this node. Comments
that occur before any move are assigned to the root node.

	
starting_comment = ''

	A comment for the start of a variation. Only nodes that
actually start a variation (starts_variation()) can have a starting
comment. The root node can not have a starting comment.

	
variations

	A list of child nodes.

	
board()

	Gets a bitboard with the position of the node.

It’s a copy, so modifying the board will not alter the game.

	
san()

	Gets the standard algebraic notation of the move leading to this node.

Do not call this on the root node.

	
root()

	Gets the root node, i.e. the game.

	
end()

	Follows the main variation to the end and returns the last node.

	
starts_variation()

	Checks if this node starts a variation (and can thus have a starting
comment). The root node does not start a variation and can have no
starting comment.

	
is_main_line()

	Checks if the node is in the main line of the game.

	
is_main_variation()

	Checks if this node is the first variation from the point of view of its
parent. The root node also is in the main variation.

	
variation(move)

	Gets a child node by move or index.

	
has_variation(move)

	Checks if the given move appears as a variation.

	
promote_to_main(move)

	Promotes the given move to the main variation.

	
promote(move)

	Moves the given variation one up in the list of variations.

	
demote(move)

	Moves the given variation one down in the list of variations.

	
remove_variation(move)

	Removes a variation by move.

	
add_variation(move, comment='', starting_comment='', nags=())

	Creates a child node with the given attributes.

	
add_main_variation(move, comment='')

	Creates a child node with the given attributes and promotes it to the
main variation.

Parsing

	
chess.pgn.read_game(handle, error_handler=<function _raise>)

	Reads a game from a file opened in text mode.

By using text mode the parser does not need to handle encodings. It is the
callers responsibility to open the file with the correct encoding.
According to the specification PGN files should be ASCII. Also UTF-8 is
common. So this is usually not a problem.

>>> pgn = open("data/games/kasparov-deep-blue-1997.pgn")
>>> first_game = chess.pgn.read_game(pgn)
>>> second_game = chess.pgn.read_game(pgn)
>>>
>>> first_game.headers["Event"]
'IBM Man-Machine, New York USA'

Use StringIO to parse games from a string.

>>> pgn_string = "1. e4 e5 2. Nf3 *"
>>>
>>> try:
>>> from StringIO import StringIO # Python 2
>>> except ImportError:
>>> from io import StringIO # Python 3
>>>
>>> pgn = StringIO(pgn_string)
>>> game = chess.pgn.read_game(pgn)

The end of a game is determined by a completely blank line or the end of
the file. (Of course blank lines in comments are possible.)

According to the standard at least the usual 7 header tags are required
for a valid game. This parser also handles games without any headers just
fine.

The parser is relatively forgiving when it comes to errors. It skips over
tokens it can not parse. However it is difficult to handle illegal or
ambiguous moves. If such a move is encountered the default behaviour is to
stop right in the middle of the game and raise ValueError. If you pass
None for error_handler all errors are silently ignored, instead. If you
pass a function this function will be called with the error as an argument.

Returns the parsed game or None if the EOF is reached.

	
chess.pgn.scan_headers(handle)

	Scan a PGN file opened in text mode for game offsets and headers.

Yields a tuple for each game. The first element is the offset. The second
element is an ordered dictionary of game headers.

Since actually parsing many games from a big file is relatively expensive,
this is a better way to look only for specific games and seek and parse
them later.

This example scans for the first game with Kasparov as the white player.

>>> pgn = open("mega.pgn")
>>> for offset, headers in chess.pgn.scan_headers(pgn):
... if "Kasparov" in headers["White"]:
... kasparov_offset = offset
... break

Then it can later be seeked an parsed.

>>> pgn.seek(kasparov_offset)
>>> game = chess.pgn.read_game(pgn)

This also works nicely with generators, scanning lazily only when the next
offset is required.

>>> white_win_offsets = (offset for offset, headers in chess.pgn.scan_headers(pgn)
... if headers["Result"] == "1-0")
>>> first_white_win = next(white_win_offsets)
>>> second_white_win = next(white_win_offsets)

Be careful when seeking a game in the file while more offsets are being
generated.

	
chess.pgn.scan_offsets(handle)

	Scan a PGN file opened in text mode for game offsets.

Yields the starting offsets of all the games, so that they can be seeked
later. This is just like scan_headers() but more efficient if you do
not actually need the header information.

The PGN standard requires each game to start with an Event-tag. So does
this scanner.

Writing

If you want to export your game game with all headers, comments and variations
you can use:

>>> print(game)
[Event "?"]
[Site "?"]
[Date "????.??.??"]
[Round "?"]
[White "?"]
[Black "?"]
[Result "*"]

1. e4 e5 { Comment } *

Remember that games in files should be separated with extra blank lines.

>>> print(game, file=handle, end="\n\n")

Use exporter objects if you need more control. Exporter objects are used to
allow extensible formatting of PGN like data.

	
class chess.pgn.StringExporter(columns=80)

	Allows exporting a game as a string.

The export method of Game also provides options to include or exclude
headers, variations or comments. By default everything is included.

>>> exporter = chess.pgn.StringExporter()
>>> game.export(exporter, headers=True, variations=True, comments=True)
>>> pgn_string = str(exporter)

Only columns characters are written per line. If columns is None then
the entire movetext will be on a single line. This does not affect header
tags and comments.

There will be no newlines at the end of the string.

	
class chess.pgn.FileExporter(handle, columns=80)

	Like a StringExporter, but games are written directly to a text file.

There will always be a blank line after each game. Handling encodings is up
to the caller.

>>> new_pgn = open("new.pgn", "w")
>>> exporter = chess.pgn.FileExporter(new_pgn)
>>> game.export(exporter)

NAGs

Numeric anotation glyphs describe moves and positions using standardized codes
that are understood by many chess programs. During PGN parsing, annotations
like !, ?, !!, etc. are also converted to NAGs.

	
NAG_NULL = 0

	

	
NAG_GOOD_MOVE = 1

	A good move. Can also be indicated by ! in PGN notation.

	
NAG_MISTAKE = 2

	A mistake. Can also be indicated by ? in PGN notation.

	
NAG_BRILLIANT_MOVE = 3

	A brilliant move. Can also be indicated by !! in PGN notation.

	
NAG_BLUNDER = 4

	A blunder. Can also be indicated by ?? in PGN notation.

	
NAG_SPECULATIVE_MOVE = 5

	A speculative move. Can also be indicated by !? in PGN notation.

	
NAG_DUBIOUS_MOVE = 6

	A dubious move. Can also be indicated by ?! in PGN notation.

 Copyright 2014-2015, Niklas Fiekas.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python-chess 0.8.3 documentation

Polyglot opening book reading

	
chess.polyglot.open_reader(path)

	Creates a reader for the file at the given path.

>>> with open_reader("data/opening-books/performance.bin") as reader:
>>> entries = reader.get_entries_for_position(board)

	
class chess.polyglot.Entry

	An entry from a polyglot opening book.

	
key

	The Zobrist hash of the position.

	
raw_move

	The raw binary representation of the move. Use the move() method to
extract a move object from this.

	
weight

	An integer value that can be used as the weight for this entry.

	
learn

	Another integer value that can be used for extra information.

	
move()

	Gets the move (as a Move object).

	
class chess.polyglot.Reader(handle)

	A reader for a polyglot opening book opened in binary mode. The file has to
be seekable.

Provides methods to seek entries for specific positions but also ways to
efficiently use the opening book like a list.

>>> # Get the number of entries
>>> len(reader)
92954

>>> # Get the nth entry
>>> entry = reader[n]

>>> # Iteration
>>> for entry in reader:
>>> pass

>>> # Backwards iteration
>>> for entry in reversed(reader):
>>> pass

	
seek_entry(offset, whence=0)

	Seek an entry by its index.

Translated directly to a low level seek on the binary file. whence is
equivalent.

	
seek_position(position)

	Seek the first entry for the given position.

Raises KeyError if there are no entries for the position.

	
next_raw()

	Reads the next raw entry as a tuple.

Raises StopIteration at the EOF.

	
next()

	Reads the next Entry.

Raises StopIteration at the EOF.

	
get_entries_for_position(position)

	Seeks a specific position and yields all entries.

	
chess.POLYGLOT_RANDOM_ARRAY = [0x9D39247E33776D41, ..., 0xF8D626AAAF278509]

	Array of 781 polyglot compatible pseudo random values for Zobrist hashing.

 Copyright 2014-2015, Niklas Fiekas.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python-chess 0.8.3 documentation

Syzygy endgame tablebase probing

Syzygy tablebases provide WDL (win/draw/loss) and DTZ (distance to
zero) information for all endgame positions with up to 6 pieces. Positions
with castling rights are not included.

	
class chess.syzygy.Tablebases(directory=None, load_wdl=True, load_dtz=True)

	Manages a collection of tablebase files for probing.

Syzygy tables come in files like KQvKN.rtbw or KRBvK.rtbz, one WDL
(.rtbw) and DTZ (.rtbz) file for each material composition.

Directly loads tables from directory. See open_directory.

	
open_directory(directory, load_wdl=True, load_dtz=True)

	Loads tables from a directory.

By default all available tables with the correct file names
(e.g. KQvKN.rtbw or KRBvK.rtbz) are loaded.

Returns the number of successfully openened and loaded tablebase files.

	
probe_wdl(board)

	Probes WDL tables for win/draw/loss-information.

Probing is thread-safe when done with different board objects and
if board objects are not modified during probing.

Returns None if the position was not found in any of the loaded
tables.

Returns 2 if the side to move is winning, 0 if the position is
a draw and -2 if the side to move is losing.

Returns 1 in case of a cursed win and -1 in case of a blessed
loss. Mate can be forced but the position can be drawn due to the
fifty-move rule.

>>> with chess.syzygy.Tablebases("data/syzygy") as tablebases:
... tablebases.probe_wdl(chess.Board("8/2K5/4B3/3N4/8/8/4k3/8 b - - 0 1"))
...
-2

	
probe_dtz(board)

	Probes DTZ tables for distance to zero information.

Probing is thread-safe when done with different board objects and
if board objects are not modified during probing.

Return None if the position was not found in any of the loaded tables.
Both DTZ and WDL tables are required in order to probe for DTZ values.

Returns a positive value if the side to move is winning, 0 if the
position is a draw and a negative value if the side to move is losing.

A non-zero distance to zero means the number of halfmoves until the
next pawn move or capture can be forced, keeping a won position.
Minmaxing the DTZ values guarantees winning a won position (and drawing
a drawn position), because it makes progress keeping the win in hand.
However the lines are not always the most straight forward ways to win.
Engines like Stockfish calculate themselves, checking with DTZ, but only
play according to DTZ if they can not manage on their own.

>>> with chess.syzygy.Tablebases("data/syzygy") as tablebases:
... tablebases.probe_dtz(chess.Board("8/2K5/4B3/3N4/8/8/4k3/8 b - - 0 1"))
...
-53

	
close()

	Closes all loaded tables.

 Copyright 2014-2015, Niklas Fiekas.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	python-chess 0.8.3 documentation

UCI engine communication

The Universal Chess Interface [https://chessprogramming.wikispaces.com/UCI] is a protocol for communicating with engines.

	
chess.uci.popen_engine(command, engine_cls=<class 'chess.uci.Engine'>)

	Opens a local chess engine process.

No initialization commands are sent, so do not forget to send the
mandatory uci command.

>>> engine = chess.uci.popen_engine("/usr/games/stockfish")
>>> engine.uci()
>>> engine.name
'Stockfish 230814 64'
>>> engine.author
'Tord Romstad, Marco Costalba and Joona Kiiski'

The input and input streams will be linebuffered and able both Windows
and Unix newlines.

	
chess.uci.spur_spawn_engine(shell, command, engine_cls=<class 'chess.uci.Engine'>)

	Spwans a remote engine using a Spur [https://pypi.python.org/pypi/spur] shell.

>>> import spur
>>> shell = spur.SshShell(hostname="localhost", username="username", password="pw")
>>> engine = chess.uci.spur_spwan_engine(shell, ["/usr/games/stockfish"])
>>> engine.uci()

	
class chess.uci.Engine(process)

	
	
process

	The underlying operating system process.

	
name

	The name of the engine. Conforming engines should send this as
id name when they receive the initial uci command.

	
author

	The author, as sent via id author. Just like the name.

	
options

	A case insensitive dictionary of Options. The engine should send
available options when it receives the initial uci command.

	
uciok

	threading.Event() that will be set as soon as uciok was received.
By then name, author and options should be available.

	
return_code

	The return code of the operating system process.

	
terminated

	threading.Event() that will be set as soon as the underyling
operating system process is terminated and the return_code is
available.

	
terminate(async=False)

	Terminate the engine.

This is not an UCI command. It instead tries to terminate the engine
on operating system level, for example by sending SIGTERM on Unix
systems. If possible, first try the quit command.

	Returns:	The return code of the engine process.

	
kill(async=False)

	Kill the engine.

Forcefully kill the engine process, for example by sending SIGKILL.

	Returns:	The return code of the engine process.

	
is_alive()

	Poll the engine process to check if it is alive.

UCI commands

	
class chess.uci.Engine(process)

	
	
uci(async_callback=None)

	Tells the engine to use the UCI interface.

This is mandatory before any other command. A conforming engine will
send its name, authors and available options.

	Returns:	Nothing

	
debug(on, async_callback=None)

	Switch the debug mode on or off.

In debug mode the engine should send additional infos to the GUI to
help debugging. This mode should be switched off by default.

	Parameters:	on – bool

	Returns:	Nothing

	
isready(async_callback=None)

	Command used to synchronize with the engine.

The engine will respond as soon as it has handled all other queued
commands.

	Returns:	Nothing

	
setoption(options, async_callback=None)

	Set a values for the engines available options.

	Parameters:	options – A dictionary with option names as keys.

	Returns:	Nothing

	
ucinewgame(async_callback=None)

	Tell the engine that the next search will be from a different game.

This can be a new game the engine should play or if the engine should
analyse a position from a different game. Using this command is
recommended but not required.

	Returns:	Nothing

	
position(board, async_callback=None)

	Set up a given position.

Instead of just the final FEN, the initial FEN and all moves leading
up to the position will be sent, so that the engine can detect
repetitions.

If the position is from a new game it is recommended to use the
ucinewgame command before the position command.

	Parameters:	board – A chess.Board.

	Returns:	Nothing

	
go(searchmoves=None, ponder=False, wtime=None, btime=None, winc=None, binc=None, movestogo=None, depth=None, nodes=None, mate=None, movetime=None, infinite=False, async_callback=None)

	Start calculating on the current position.

All parameters are optional, but there should be at least one of
depth, nodes, mate, infinite or some time control settings,
so that the engine knows how long to calculate.

	Parameters:	
	searchmoves – Restrict search to moves in this list.

	ponder – Bool to enable pondering mode. The engine will not stop
pondering in the background until a stop command is received.

	wtime – Integer of milliseconds white has left on the clock.

	btime – Integer of milliseconds black has left on the clock.

	winc – Integer of white Fisher increment.

	binc – Integer of black Fisher increment.

	movestogo – Number of moves to the next time control. If this is
not set, but wtime or btime are, then it is sudden death.

	depth – Search depth ply only.

	nodes – Search so many nodes only.

	mate – Search for a mate in mate moves.

	movetime – Integer. Search exactly movetime milliseconds.

	infinite – Search in the backgorund until a stop command is
received.

	Returns:	In normal search mode a tuple of two elements. The first
is the best move according to the engine. The second is the ponder
move. This is the reply expected by the engine. Either of the
elements may be None. In infinite search mode or
ponder mode there is no result. See stop (or ponderhit)
instead.

	
stop(async_callback=None)

	Stop calculating as soon as possible.

	Returns:	A tuple of the latest best move and the ponder move. See the
go command. Results of infinite searches will also be available
here.

	
ponderhit(async_callback=None)

	May be sent if the expected ponder move has been played.

The engine should continue searching but should switch from pondering
to normal search.

	Returns:	A tuple of two elements. The first element is the best move

according to the engine. The second is the new ponder move. Either
of the elements may be None.

	
quit(async_callback=None)

	Quit the engine as soon as possible.

	Returns:	The return code of the engine process.

Asynchronous communication

By default all operations are executed synchronously and their result is
returned. For example

>>> engine.go(movetime=2000)
BestMove(bestmove=Move.from_uci('e2e4'), ponder=None)

will take about 2000 milliseconds. All UCI commands have an optional
async_callback argument. They will then immediately return information about
the command and continue.

>>> command = engine.go(movetime=2000, async_callback=True)
>>> command.done()
False
>>> command.result() # Synchronously wait for the command to finish
BestMove(bestmove=Move.from_uci('e2e4'), ponder=None)
>>> command.done()
True

Instead of just passing async_callback=True a callback function may be
passed. It will be invoked possibly on a different thread as soon as the
command is completed. It takes a Command object as a single argument.

>>> def on_go_finished(command):
... # Will likely be executed on a different thread.
... bestmove, ponder = command.result()
...
>>> command = engine.go(movetime=2000, async_callback=on_go_finished)

All commands are queued and executed in FIFO order (regardless if asynchronous
or not).

	
class chess.uci.Command

	Information about the state of a command.

	
done()

	Returns whether the command has already been completed.

	
add_done_callback(fn)

	Add a callback function to be notified once the command completes.

The callback function will receive the Command object as a single
argument.

The callback might be executed on a different thread. If the command
has already been completed it will be invoked immidiately, instead.

	
result(timeout=None)

	Wait for the command to finish and return the result.

A timeout in seconds may be given as a floating point number and
TimeoutError is raised if the command does not complete in time.

Info handler

Chess engines may send information about their calculations with the info
command. You can register info handlers to be asynchronously notified whenever
the engine sends more information. You would usually subclass the InfoHandler
class.

	
class chess.uci.Score

	A centipawns or mate score sent by an UCI engine.

	
cp

	Evaluation in centipawns or None.

	
mate

	Mate in x or None. Negative if the engine thinks it is going to be
mated.

	
lowerbound

	If the score is not exact but only a lowerbound.

	
upperbound

	If the score is only an upperbound.

	
class chess.uci.InfoHandler

	
	
info

	The default implementation stores all received information in this
dictionary. To get a consistent snapshot use the object as if it were
a threading.Lock().

>>> # Register the handler.
>>> handler = InfoHandler()
>>> engine.info_handlers.append(handler)

>>> # Start thinking.
>>> engine.go(infinite=True)

>>> # Wait a moment, then access a consistent snapshot.
>>> time.sleep(3)
>>> with handler:
... if "score" in handler.info:
... print("Score: ", handler.info["score"].cp)
... print("Mate: ", handler.info["score"].mate)
Score: 34
Mate: None

	
depth(x)

	Received search depth in plies.

	
seldepth(x)

	Received selective search depth in plies.

	
time(x)

	Received new time searched in milliseconds.

	
nodes(x)

	Received number of nodes searched.

	
pv(moves)

	Received the principal variation as a list of moves.

In MultiPV mode this is related to the most recent multipv number
sent by the engine.

	
multipv(num)

	Received a new multipv number, starting at 1.

	
score(cp, mate, lowerbound, upperbound)

	Received a new evaluation in centipawns or a mate score.

cp may be None if no score in centipawns is available.

mate may be None if no forced mate has been found. A negative
numbers means the engine thinks it will get mated.

lowerbound and upperbound are usually False. If True, the sent
score are just a lowerbound or upperbound.

	
currmove(move)

	Received a move the engine is currently thinking about.

	
currmovenumber(x)

	Received a new currmovenumber.

	
hashfull(x)

	Received new information about the hashtable.

The hashtable is x permill full.

	
nps(x)

	Received new nodes per second statistic.

	
tbhits(x)

	Received new information about the number of table base hits.

	
cpuload(x)

	Received new cpuload information in permill.

	
string(string)

	Received a string the engine wants to display.

	
refutation(move, refuted_by)

	Received a new refutation of a move.

refuted_by may be a list of moves representing the mainline of the
refutation or None if no refutation has been found.

Engines should only send refutations if the UCI_ShowRefutations
option has been enabled.

	
currline(cpunr, moves)

	Received a new snapshot of a line a specific CPU is calculating.

cpunr is an integer representing a specific CPU. moves is a list
of moves.

	
pre_info(line)

	Received a new info line about to be processed.

When subclassing remember to call this method of the parent class in
order to keep the locking in tact.

	
post_info()

	Processing of a new info line has been finished.

When subclassing remember to call this method of the parent class in
order to keep the locking in tact.

	
pre_bestmove(line)

	A new bestmove command is about to be processed.

	
on_bestmove(bestmove, ponder)

	A new bestmove and pondermove have been received.

	
post_bestmove()

	A new bestmove command was processed.

Since this indicates that the current search has been finished the
dictionary with the current information will be cleared.

Options

	
class chess.uci.Option

	Information about an available option for an UCI engine.

	
name

	The name of the option.

	
type

	The type of the option.

Officially documented types are check for a boolean value, spin
for an integer value between a minimum and a maximum, combo for an
enumeration of predefined string values (one of which can be selected),
button for an action and string for a textfield.

	
default

	The default value of the option.

There is no need to send a setoption command with the defaut value.

	
min

	The minimum integer value of a spin option.

	
max

	The maximum integer value of a spin option.

	
var

	A list of allows string values for a combo option.

 Copyright 2014-2015, Niklas Fiekas.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	python-chess 0.8.3 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

A

 	

 	add_done_callback() (chess.uci.Command method)

 	add_main_variation() (chess.pgn.GameNode method)

 	add_variation() (chess.pgn.GameNode method)

 	

 	attackers() (chess.Board method)

 	author (Engine attribute)

B

 	

 	Board (class in chess)

 	

 	board() (chess.pgn.Game method)

 	

 	(chess.pgn.GameNode method)

C

 	

 	can_claim_draw() (chess.Board method)

 	can_claim_fifty_moves() (chess.Board method)

 	can_claim_threefold_repetition() (chess.Board method)

 	can_claim_threefold_repitition() (chess.Board method)

 	castling_rights (Board attribute)

 	chess.A1 (built-in variable)

 	chess.B1 (built-in variable)

 	chess.BISHOP (built-in variable)

 	chess.BLACK (built-in variable)

 	chess.CASTLING (built-in variable)

 	chess.CASTLING_BLACK (built-in variable)

 	chess.CASTLING_BLACK_KINGSIDE (built-in variable)

 	chess.CASTLING_BLACK_QUEENSIDE (built-in variable)

 	chess.CASTLING_NONE (built-in variable)

 	chess.CASTLING_WHITE (built-in variable)

 	chess.CASTLING_WHITE_KINGSIDE (built-in variable)

 	chess.CASTLING_WHITE_QUEENSIDE (built-in variable)

 	chess.FILE_NAMES (built-in variable)

 	chess.H8 (built-in variable)

 	chess.KING (built-in variable)

 	

 	chess.KNIGHT (built-in variable)

 	chess.NONE (built-in variable)

 	chess.PAWN (built-in variable)

 	chess.POLYGLOT_RANDOM_ARRAY (built-in variable)

 	chess.QUEEN (built-in variable)

 	chess.ROOK (built-in variable)

 	chess.SQUARE_NAMES (built-in variable)

 	chess.SQUARES (built-in variable)

 	chess.WHITE (built-in variable)

 	clear() (chess.Board method)

 	close() (chess.syzygy.Tablebases method)

 	color (Piece attribute)

 	Command (class in chess.uci)

 	comment (GameNode attribute)

 	cp (Score attribute)

 	cpuload() (chess.uci.InfoHandler method)

 	currline() (chess.uci.InfoHandler method)

 	currmove() (chess.uci.InfoHandler method)

 	currmovenumber() (chess.uci.InfoHandler method)

D

 	

 	debug() (chess.uci.Engine method)

 	default (Option attribute)

 	demote() (chess.pgn.GameNode method)

 	

 	depth() (chess.uci.InfoHandler method)

 	done() (chess.uci.Command method)

E

 	

 	end() (chess.pgn.GameNode method)

 	Engine (class in chess.uci), [1]

 	Entry (class in chess.polyglot)

 	

 	ep_square (Board attribute)

 	epd() (chess.Board method)

F

 	

 	fen() (chess.Board method)

 	file_index() (in module chess)

 	FileExporter (class in chess.pgn)

 	from_square (Move attribute)

 	

 	from_symbol() (chess.Piece class method)

 	from_uci() (chess.Move class method)

 	fullmove_number (Board attribute)

G

 	

 	Game (class in chess.pgn)

 	GameNode (class in chess.pgn)

 	

 	get_entries_for_position() (chess.polyglot.Reader method)

 	go() (chess.uci.Engine method)

H

 	

 	halfmove_clock (Board attribute)

 	has_variation() (chess.pgn.GameNode method)

 	

 	hashfull() (chess.uci.InfoHandler method)

 	headers (Game attribute)

I

 	

 	info (InfoHandler attribute)

 	InfoHandler (class in chess.uci)

 	is_alive() (chess.uci.Engine method)

 	is_attacked_by() (chess.Board method)

 	is_check() (chess.Board method)

 	is_checkmate() (chess.Board method)

 	is_fivefold_repetition() (chess.Board method)

 	is_fivefold_repitition() (chess.Board method)

 	

 	is_game_over() (chess.Board method)

 	is_insufficient_material() (chess.Board method)

 	is_into_check() (chess.Board method)

 	is_main_line() (chess.pgn.GameNode method)

 	is_main_variation() (chess.pgn.GameNode method)

 	is_seventyfive_moves() (chess.Board method)

 	is_stalemate() (chess.Board method)

 	isready() (chess.uci.Engine method)

K

 	

 	key (Entry attribute)

 	

 	kill() (chess.uci.Engine method)

L

 	

 	learn (Entry attribute)

 	legal_moves (Board attribute)

 	

 	lowerbound (Score attribute)

M

 	

 	mate (Score attribute)

 	max (Option attribute)

 	min (Option attribute)

 	Move (class in chess)

 	

 	move (GameNode attribute)

 	move() (chess.polyglot.Entry method)

 	multipv() (chess.uci.InfoHandler method)

N

 	

 	NAG_BLUNDER (built-in variable)

 	NAG_BRILLIANT_MOVE (built-in variable)

 	NAG_DUBIOUS_MOVE (built-in variable)

 	NAG_GOOD_MOVE (built-in variable)

 	NAG_MISTAKE (built-in variable)

 	NAG_NULL (built-in variable)

 	NAG_SPECULATIVE_MOVE (built-in variable)

 	

 	nags (GameNode attribute)

 	name (Engine attribute)

 	

 	(Option attribute)

 	next() (chess.polyglot.Reader method)

 	next_raw() (chess.polyglot.Reader method)

 	nodes() (chess.uci.InfoHandler method)

 	nps() (chess.uci.InfoHandler method)

 	null() (chess.Move class method)

O

 	

 	on_bestmove() (chess.uci.InfoHandler method)

 	open_directory() (chess.syzygy.Tablebases method)

 	open_reader() (in module chess.polyglot)

 	

 	Option (class in chess.uci)

 	options (Engine attribute)

P

 	

 	parent (GameNode attribute)

 	parse_san() (chess.Board method)

 	peek() (chess.Board method)

 	Piece (class in chess)

 	piece_at() (chess.Board method)

 	piece_type (Piece attribute)

 	piece_type_at() (chess.Board method)

 	ponderhit() (chess.uci.Engine method)

 	pop() (chess.Board method)

 	popen_engine() (in module chess.uci)

 	position() (chess.uci.Engine method)

 	post_bestmove() (chess.uci.InfoHandler method)

 	post_info() (chess.uci.InfoHandler method)

 	

 	pre_bestmove() (chess.uci.InfoHandler method)

 	pre_info() (chess.uci.InfoHandler method)

 	probe_dtz() (chess.syzygy.Tablebases method)

 	probe_wdl() (chess.syzygy.Tablebases method)

 	process (Engine attribute)

 	promote() (chess.pgn.GameNode method)

 	promote_to_main() (chess.pgn.GameNode method)

 	promotion (Move attribute)

 	pseudo_legal_moves (Board attribute)

 	push() (chess.Board method)

 	push_san() (chess.Board method)

 	pv() (chess.uci.InfoHandler method)

Q

 	

 	quit() (chess.uci.Engine method)

R

 	

 	rank_index() (in module chess)

 	raw_move (Entry attribute)

 	read_game() (in module chess.pgn)

 	Reader (class in chess.polyglot)

 	refutation() (chess.uci.InfoHandler method)

 	remove_piece_at() (chess.Board method)

 	

 	remove_variation() (chess.pgn.GameNode method)

 	reset() (chess.Board method)

 	result() (chess.uci.Command method)

 	return_code (Engine attribute)

 	root() (chess.pgn.GameNode method)

S

 	

 	san() (chess.Board method)

 	

 	(chess.pgn.GameNode method)

 	scan_headers() (in module chess.pgn)

 	scan_offsets() (in module chess.pgn)

 	Score (class in chess.uci)

 	score() (chess.uci.InfoHandler method)

 	seek_entry() (chess.polyglot.Reader method)

 	seek_position() (chess.polyglot.Reader method)

 	seldepth() (chess.uci.InfoHandler method)

 	set_epd() (chess.Board method)

 	set_fen() (chess.Board method)

 	set_piece_at() (chess.Board method)

 	

 	setoption() (chess.uci.Engine method)

 	setup() (chess.pgn.Game method)

 	spur_spawn_engine() (in module chess.uci)

 	starting_comment (GameNode attribute)

 	STARTING_FEN (in module chess)

 	starts_variation() (chess.pgn.GameNode method)

 	status() (chess.Board method)

 	stop() (chess.uci.Engine method)

 	string() (chess.uci.InfoHandler method)

 	StringExporter (class in chess.pgn)

 	symbol() (chess.Piece method)

T

 	

 	Tablebases (class in chess.syzygy)

 	tbhits() (chess.uci.InfoHandler method)

 	terminate() (chess.uci.Engine method)

 	terminated (Engine attribute)

 	

 	time() (chess.uci.InfoHandler method)

 	to_square (Move attribute)

 	turn (Board attribute)

 	type (Option attribute)

U

 	

 	uci() (chess.Move method)

 	

 	(chess.uci.Engine method)

 	ucinewgame() (chess.uci.Engine method)

 	

 	uciok (Engine attribute)

 	upperbound (Score attribute)

V

 	

 	var (Option attribute)

 	variation() (chess.pgn.GameNode method)

 	

 	variations (GameNode attribute)

W

 	

 	was_into_check() (chess.Board method)

 	

 	weight (Entry attribute)

Z

 	

 	zobrist_hash() (chess.Board method)

 Copyright 2014-2015, Niklas Fiekas.
 Created using Sphinx 1.3.1.

 search.html

 Navigation

 		
 index

 		python-chess 0.8.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014-2015, Niklas Fiekas.
 Created using Sphinx 1.3.1.

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/plus.png

_static/up.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/ajax-loader.gif

_static/comment-close.png

