

 Navigation

 	
 index

 	
 next |

 	python-chess 0.4.2 documentation

python-chess: a pure Python chess library

[image: https://travis-ci.org/niklasf/python-chess.svg?branch=master]
 [https://travis-ci.org/niklasf/python-chess][image: https://coveralls.io/repos/niklasf/python-chess/badge.png]
 [https://coveralls.io/r/niklasf/python-chess][image: https://readthedocs.org/projects/python-chess/badge/?version=latest]
 [https://python-chess.readthedocs.org/en/latest/]
 [https://pypi.python.org/pypi/python-chess]
Introduction

This is the scholars mate in python-chess:

>>> import chess

>>> board = chess.Bitboard()

>>> board.push_san("e4")
Move.from_uci('e2e4')
>>> board.push_san("e5")
Move.from_uci('e7e5')
>>> board.push_san("Qh5")
Move.from_uci('d1h5')
>>> board.push_san("Nc6")
Move.from_uci('b8c6')
>>> board.push_san("Bc4")
Move.from_uci('f1c4')
>>> board.push_san("Nf6")
Move.from_uci('g8f6')
>>> board.push_san("Qxf7")
Move.from_uci('h5f7')

>>> board.is_checkmate()
True

Documentation

https://python-chess.readthedocs.org/en/latest/

Features

	Supports Python 2.7 and Python 3.

	Legal move generator and move validation. This includes all castling
rules and en-passant captures.

>>> chess.Move.from_uci("a8a1") in board.legal_moves
False

	Make and unmake moves.

>>> Qf7 = board.pop() # Unmake last move (Qf7#)
>>> Qf7
Move.from_uci('h5f7')

>>> board.push(Qf7) # Restore

	Detects checkmates, stalemates and draws by insufficient material.

>>> board.is_stalemate()
False
>>> board.is_insufficient_material()
False
>>> board.is_game_over()
True
>>> board.halfmove_clock
0

	Detects repititions. Has a half move clock.

>>> board.can_claim_threefold_repitition()
False
>>> board.halfmove_clock
0
>>> board.can_claim_fifty_moves()
False
>>> board.can_claim_draw()
False

With the new rules from July 2014 a game ends drawn (even without a claim)
once a fivefold repitition occurs or if there are 75 moves without a pawn
push or capture. Other ways of ending a game take precedence.

>>> board.is_fivefold_repitition()
False
>>> board.is_seventyfive_moves()
False

	Detects checks and attacks.

>>> board.is_check()
True
>>> board.is_attacked_by(chess.WHITE, chess.E8)
True

>>> attackers = board.attackers(chess.WHITE, chess.F3)
>>> attackers
SquareSet(0b100000001000000)
>>> chess.G2 in attackers
True

	Parses and creates SAN representation of moves.

>>> board = chess.Bitboard()
>>> board.san(chess.Move(chess.E2, chess.E4))
'e4'

	Parses and creates FENs.

>>> board.fen()
'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1'
>>> board = chess.Bitboard("8/8/8/2k5/4K3/8/8/8 w - - 4 45")
>>> board.piece_at(chess.C5)
Piece.from_symbol('k')

	Parses and creates EPDs.

>>> board = chess.Bitboard()
>>> board.epd(bm=chess.Move.from_uci("d2d4"))
'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - bm d4;'

>>> ops = board.set_epd("1k1r4/pp1b1R2/3q2pp/4p3/2B5/4Q3/PPP2B2/2K5 b - - bm Qd1+; id \"BK.01\";")
>>> ops == {'bm': chess.Move.from_uci('d6d1'), 'id': 'BK.01'}
True

	Read Polyglot opening books.

>>> import chess.polyglot

>>> book = chess.polyglot.open_reader("data/opening-books/performance.bin")
>>> board = chess.Bitboard()
>>> first_entry = next(book.get_entries_for_position(board))
>>> first_entry.move()
Move.from_uci('e2e4')
>>> first_entry.learn
0
>>> first_entry.weight
1

>>> book.close()

	Read and write PGNs. Supports headers, comments, NAGs and a tree of
variations.

>>> import chess.pgn

>>> from __future__ import print_function # Python 2 compability for
>>> # this example.

>>> pgn = open("data/games/molinari-bordais-1979.pgn")
>>> first_game = chess.pgn.read_game(pgn)
>>> pgn.close()

>>> first_game.headers["White"]
'Molinari'
>>> first_game.headers["Black"]
'Bordais'

>>> # Iterate through the mainline of this embarrasingly short game.
>>> node = first_game
>>> while node.variations:
... next_node = node.variation(0)
... print(node.board().san(next_node.move))
... node = next_node
e4
c5
c4
Nc6
Ne2
Nf6
Nbc3
Nb4
g3
Nd3#

>>> first_game.headers["Result"]
'0-1'

Peformance

python-chess is not intended to be used by serious chess engines where
performance is critical. The goal is rather to create a simple and relatively
highlevel library.

However, even though bit fiddling in Python is not as fast as in C or C++,
the current version is still much faster than previous attempts including
the naive x88 move generation from libchess.

Installing

	With pip:

sudo pip install python-chess

	From current source code:

python setup.py build
sudo python setup.py install

License

python-chess is licensed under the GPL3. See the LICENSE file for the
full copyright and license information.

Thanks to the developers of http://chessx.sourceforge.net/. Some of the core
bitboard move generation parts are ported from there.

Contents

	Changelog for python-chess
	New in v0.4.2

	New in v0.4.1

	New in v0.4.0

	New in v0.3.1

	New in v0.3.0

	New in v0.2.0

	New in v0.1.0

	New in v0.0.4

	Pre v0.0.4

	Core
	Colors

	Piece types

	Castling rights

	Squares

	Pieces

	Moves

	Bitboard

	PGN parsing and writing
	Game model

	Parsing

	Writing

	NAGs

	Polyglot opening book reading

Indices and tables

	Index

	Search Page

 Copyright 2014, Niklas Fiekas.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python-chess 0.4.2 documentation

Changelog for python-chess

This project is pretty young and maturing only slowly. At the current stage it
is more important to get things right, than to be consistent with previous
versions. Use this changelog to see what changed in a new release, because this
might include API breaking changes.

New in v0.4.2

	Fix bug where pawn_moves_from() and consequently is_legal() weren’t
handling en-passant correctly. Thanks to Norbert Naskov for reporting.

New in v0.4.1

	Fix is_fivefold_repitition(): The new fivefold repitition rule requires
the repititions to occur on alternating consecutive moves.

	Minor testing related improvements: Close PGN files, allow running via
setuptools.

	Add recently introduced features to README.

New in v0.4.0

	Introduce can_claim_draw(), can_claim_fifty_moves() and
can_claim_threefold_repitition().

	Since the first of July 2014 a game is also over (even without claim by one
of the players) if there were 75 moves without a pawn move or capture or
a fivefold repitition. Let is_game_over() respect that. Introduce
is_seventyfive_moves() and is_fivefold_repitition(). Other means of
ending a game take precedence.

	Threefold repitition checking requires efficient hashing of positions
to build the table. So performance improvements were needed there. The
default polyglot compatible zobrist hashes are now built incrementally.

	Fix low level rotation operations l90(), l45() and r45(). There was
no problem in core because correct versions of the functions were inlined.

	Fix equality and inequality operators for Bitboard, Move and Piece.
Also make them robust against comparisons with incompatible types.

	Provide equality and inequality operators for SquareSet and
polyglot.Entry.

	Fix return values of incremental arithmetical operations for SquareSet.

	Make polyglot.Entry a collections.namedtuple.

	Determine and improve test coverage.

	Minor coding style fixes.

New in v0.3.1

	Bitboard.status() now correctly detects STATUS_INVALID_EP_SQUARE,
instead of errors or false reports.

	Polyglot opening book reader now correctly handles knight underpromotions.

	Minor coding style fixes, including removal of unused imports.

New in v0.3.0

	Rename property half_moves of Bitboard to halfmove_clock.

	Rename property ply of Bitboard to fullmove_number.

	Let PGN parser handle symbols like !, ?, !? and so on by converting
them to NAGs.

	Add a human readable string representation for Bitboards.

>>> print(chess.Bitboard())
r n b q k b n r
p p p p p p p p
.
.
.
.
P P P P P P P P
R N B Q K B N R

	Various documentation improvements.

New in v0.2.0

	Implement PGN parsing and writing.

	Hugely improve test coverage and use Travis CI for continuous integration and
testing.

	Create an API documentation.

	Improve Polyglot opening-book handling.

New in v0.1.0

Apply the lessons learned from the previous releases, redesign the API and
implement it in pure Python.

New in v0.0.4

Implement the basics in C++ and provide bindings for Python. Obviously
performance was a lot better - but at the expense of having to compile
code for the target platform.

Pre v0.0.4

First experiments with a way too slow pure Python API, creating way too many
objects for basic operations.

 Copyright 2014, Niklas Fiekas.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python-chess 0.4.2 documentation

Core

Colors

Constants for the side to move or the color of a piece.

	
chess.WHITE = 0

	

	
chess.BLACK = 1

	

You can get the opposite color using color ^ 1.

Piece types

	
chess.NONE = 0

	

	
chess.PAWN

	

	
chess.KNIGHT

	

	
chess.BISHOP

	

	
chess.ROOK

	

	
chess.QUEEN

	

	
chess.KING

	

Castling rights

The castling flags

	
chess.CASTLING_NONE = 0

	

	
chess.CASTLING_WHITE_KINGSIDE

	

	
chess.CASTLING_BLACK_KINGSIDE

	

	
chess.CASTLING_WHITE_QUEENSIDE

	

	
chess.CASTLING_BLACK_QUEENSIDE

	

can be combined bitwise.

	
chess.CASTLING_WHITE = CASTLING_WHITE_QUEENSIDE | CASTLING_WHITE_KINGSIDE

	

	
chess.CASTLING_BLACK = CASTLING_BLACK_QUEENSIDE | CASTLING_BLACK_KINGSIDE

	

	
chess.CASTLING = CASTLING_WHITE | CASTLING_BLACK

	

Squares

	
chess.A1 = 0

	

	
chess.B1 = 1

	

and so on to

	
chess.H8 = 63

	

	
chess.SQUARES = [A1, B1, ..., G8, H8]

	

	
chess.SQUARE_NAMES = ['a1', 'b1', ..., 'g8', 'h8']

	

	
chess.file_index(square)

	Gets the file index of square where 0 is the a file.

	
chess.FILE_NAMES = ['a', 'b', ..., 'g', 'h']

	

	
chess.rank_index(square)

	Gets the rank index of the square where 0 is the first rank.

Pieces

	
class chess.Piece(piece_type, color)

	A piece with type and color.

	
piece_type

	The piece type.

	
color

	The piece color.

	
symbol()

	Gets the symbol P, N, B, R, Q or K for white pieces or the
lower-case variants for the black pieces.

	
classmethod from_symbol(symbol)

	Creates a piece instance from a piece symbol.

Raises ValueError if the symbol is invalid.

Moves

	
class chess.Move(from_square, to_square, promotion=0)

	Represents a move from a square to a square and possibly the promotion piece
type.

Castling moves are identified only by the movement of the king.

Null moves are supported.

	
from_square

	The source square.

	
to_square

	The target square.

	
promotion

	The promotion piece type.

	
uci()

	Gets an UCI string for the move.

For example a move from A7 to A8 would be a7a8 or a7a8q if it is
a promotion to a queen. The UCI representatin of null moves is 0000.

	
classmethod from_uci(uci)

	Parses an UCI string.

Raises ValueError if the UCI string is invalid.

	
classmethod null()

	Gets a null move.

A null move just passes the turn to the other side (and possibly
forfeits en-passant capturing). Null moves evaluate to False in
boolean contexts.

>>> bool(chess.Move.null())
False

Bitboard

	
chess.STARTING_FEN = 'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1'

	The FEN notation of the standard chess starting position.

	
class chess.Bitboard(fen=None)

	A bitboard and additional information representing a position.

Provides move generation, validation, parsing, attack generation,
game end detection, move counters and the capability to make and unmake
moves.

The bitboard is initialized to the starting position, unless otherwise
specified in the optional fen argument.

	
turn

	The side to move.

	
castling_rights

	Bitmask of castling rights.

	
ep_square

	The potential en-passant square on the third or sixth rank or 0. It
does not matter if en-passant would actually be possible on the next
move.

	
fullmove_number

	Counts move pairs. Starts at 1 and is incremented after every move
of the black side.

	
halfmove_clock

	The number of half moves since the last capture or pawn move.

	
pseudo_legal_moves = PseudoLegalMoveGenerator(self)

	A dynamic list of pseudo legal moves.

Pseudo legal moves might leave or put the king in check, but are
otherwise valid. Null moves are not pseudo legal. Castling moves are
only included if they are completely legal.

For performance moves are generated on the fly and only when nescessary.
The following operations do not just generate everything but map to
more efficient methods.

>>> len(board.pseudo_legal_moves)
20

>>> bool(board.pseudo_legal_moves)
True

>>> move in board.pseudo_legal_moves
True

	
legal_moves = LegalMoveGenerator(self)

	A dynamic list of completely legal moves, much like the pseudo legal
move list.

	
reset()

	Restores the starting position.

	
clear()

	Clears the board.

Resets move stacks and move counters. The side to move is white. There
are no rooks or kings, so castling is not allowed.

In order to be in a valid status() at least kings need to be put on
the board. This is required for move generation and validation to work
properly.

	
piece_at(square)

	Gets the piece at the given square.

	
piece_type_at(square)

	Gets the piece type at the given square.

	
remove_piece_at(square)

	Removes a piece from the given square if present.

	
set_piece_at(square, piece)

	Sets a piece at the given square. An existing piece is replaced.

	
is_attacked_by(color, square)

	Checks if the given side attacks the given square. Pinned pieces still
count as attackers.

	
attackers(color, square)

	Gets a set of attackers of the given color for the given square.

Returns a set of squares.

	
is_check()

	Checks if the current side to move is in check.

	
is_into_check(move)

	Checks if the given move would move would leave the king in check or
put it into check.

	
was_into_check()

	Checks if the king of the other side is attacked. Such a position is not
valid and could only be reached by an illegal move.

	
is_game_over()

	Checks if the game is over due to checkmate, stalemate, insufficient
mating material, the seventyfive-move rule or fivefold repitition.

	
is_checkmate()

	Checks if the current position is a checkmate.

	
is_stalemate()

	Checks if the current position is a stalemate.

	
is_insufficient_material()

	Checks for a draw due to insufficient mating material.

	
is_seventyfive_moves()

	Since the first of July 2014 a game is automatically drawn (without
a claim by one of the players) if the half move clock since a capture
or pawn move is equal to or grather than 150. Other means to end a game
take precedence.

	
is_fivefold_repitition()

	Since the first of July 2014 a game is automatically drawn (without
a claim by one of the players) if a position occurs for the fifth time
on consecutive alternating moves.

	
can_claim_draw()

	Checks if the side to move can claim a draw by the fifty-move rule or
by threefold repitition.

	
can_claim_fifty_moves()

	Draw by the fifty-move rule can be claimed once the clock of halfmoves
since the last capture or pawn move becomes equal or greater to 100
and the side to move still has a legal move they can make.

	
can_claim_threefold_repitition()

	Draw by threefold repitition can be claimed if the position on the
board occured for the third time or if such a repitition is reached
with one of the possible legal moves.

	
push(move)

	Updates the position with the given move and puts it onto a stack.

Null moves just increment the move counters, switch turns and forfeit
en passant capturing.

No validation is performed. For performance moves are assumed to be at
least pseudo legal. Otherwise there is no guarantee that the previous
board state can be restored. To check it yourself you can use:

>>> move in board.pseudo_legal_moves
True

	
pop()

	Restores the previous position and returns the last move from the stack.

	
peek()

	Gets the last move from the move stack.

	
set_epd(epd)

	Parses the given EPD string and uses it to set the position.

If present the hmvc and the fmvn are used to set the half move
clock and the fullmove number. Otherwise 0 and 1 are used.

Returns a dictionary of parsed operations. Values can be strings,
integers, floats or move objects.

Raises ValueError if the EPD string is invalid.

	
epd(**operations)

	Gets an EPD representation of the current position.

EPD operations can be given as keyword arguments. Supported operands
are strings, integers, floats and moves. All other operands are
converted to strings.

hmvc and fmvc are not included by default. You can use:

>>> board.epd(hmvc=board.halfmove_clock, fmvc=board.fullmove_number)
'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - hmvc 0; fmvc 1;'

	
set_fen(fen)

	Parses a FEN and sets the position from it.

Rasies ValueError if the FEN string is invalid.

	
fen()

	Gets the FEN representation of the position.

	
parse_san(san)

	Uses the current position as the context to parse a move in standard
algebraic notation and return the corresponding move object.

The returned move is guaranteed to be either legal or a null move.

Raises ValueError if the SAN is invalid or ambigous.

	
push_san(san)

	Parses a move in standard algebraic notation, makes the move and puts
it on the the move stack.

Raises ValueError if neither legal nor a null move.

Returns the move.

	
san(move)

	Gets the standard algebraic notation of the given move in the context of
the current position.

There is no validation. It is only guaranteed to work if the move is
legal or a null move.

	
status()

	Gets a bitmask of possible problems with the position.
Move making, generation and validation are only guaranteed to work on
a completely valid board.

	
zobrist_hash(array=None)

	Returns a Zobrist hash of the current position.

A zobrist hash is an exclusive or of pseudo random values picked from
an array. Which values are picked is decided by features of the
position, such as piece positions, castling rights and en-passant
squares. For this implementation an array of 781 values is required.

The default behaviour is to use values from POLYGLOT_RANDOM_ARRAY,
which makes for hashes compatible with polyglot opening books.

 Copyright 2014, Niklas Fiekas.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	python-chess 0.4.2 documentation

PGN parsing and writing

Game model

Games are represented as a tree of moves. Each GameNode can have extra
information such as comments. The root node of a game
(Game extends GameNode) also holds general information, such as game
headers.

	
class chess.pgn.Game

	The root node of a game with extra information such as headers and the
starting position.

By default the following 7 headers are provided in an ordered dictionary:

>>> game = chess.pgn.Game()
>>> game.headers["Event"]
'?'
>>> game.headers["Site"]
'?'
>>> game.headers["Date"]
'????.??.??'
>>> game.headers["Round"]
'?'
>>> game.headers["White"]
'?'
>>> game.headers["Black"]
'?'
>>> game.headers["Result"]
'*'

Also has all the other properties and methods of GameNode.

	
headers

	A collections.OrderedDict() of game headers.

	
board()

	Gets the starting position of the game as a bitboard.

Unless the SetUp and FEN header tags are set this is the default
starting position.

	
setup(board)

	Setup a specific starting position. This sets (or resets) the SetUp
and FEN header tags.

	
class chess.pgn.GameNode

	
	
parent

	The parent node or None if this is the root node of the game.

	
move

	The move leading to this node or None if this is the root node of the
game.

	
nags = set()

	A set of NAGs as integers. NAGs always go behind a move, so the root
node of the game can have none.

	
comment = ''

	A comment that goes behind the move leading to this node. The root
node of the game can have no comment.

	
starting_comment = ''

	A comment for the start of a variation or the game. Only nodes that
actually start a variation (starts_variation()) and the game itself
can have a starting comment.

	
variations

	A list of child nodes.

	
board()

	Gets a bitboard with the position of the node.

Its a copy, so modifying the board will not alter the game.

	
root()

	Gets the root node, i.e. the game.

	
end()

	Follows the main variation to the end and returns the last node.

	
starts_variation()

	Checks if this node starts a variation (and can thus have a starting
comment). The beginning of the game is also the start of a variation.

	
is_main_line()

	Checks if the node is in the main line of the game.

	
is_main_variation()

	Checks if this node is the first variation from the point of view of its
parent. The root node also is in the main variation.

	
variation(move)

	Gets a child node by move or index.

	
has_variation(move)

	Checks if the given move appears as a variation.

	
promote_to_main(move)

	Promotes the given move to the main variation.

	
promote(move)

	Moves the given variation one up in the list of variations.

	
demote(move)

	Moves the given variation one down in the list of variations.

	
remove_variation(move)

	Removes a variation by move.

	
add_variation(move, comment='', starting_comment='', nags=set([]))

	Creates a child node with the given attributes.

	
add_main_variation(move, comment='')

	Creates a child node with the given attributes and promotes it to the
main variation.

Parsing

	
chess.pgn.read_game(handle)

	Reads a game from a file opened in text mode.

By using text mode the parser does not need to handle encodings. It is the
callers responsibility to open the file with the correct encoding.
According to the specification PGN files should be ASCII. Also UTF-8 is
common. So this is usually not a problem.

>>> pgn = open("data/games/kasparov-deep-blue-1997.pgn")
>>> first_game = chess.pgn.read_game(pgn)
>>> second_game = chess.pgn.read_game(pgn)
>>>
>>> first_game.headers["Event"]
'IBM Man-Machine, New York USA'

Use StringIO to parse games from a string.

>>> pgn_string = "1. e4 e5 2. Nf3 *"
>>>
>>> try:
>>> from StringIO import StringIO # Python 2
>>> except ImportError:
>>> from io import StringIO # Python 3
>>>
>>> pgn = StringIO(pgn_string)
>>> game = chess.pgn.read_game(pgn)

The end of a game is determined by a completely blank line or the end of
the file. (Of course blank lines in comments are possible.)

According to the standard at least the usual 7 header tags are required
for a valid game. This parser also handles games without any headers just
fine.

Raises ValueError if invalid moves are encountered in the movetext.

Returns the parsed game or None if the EOF is reached.

	
chess.pgn.scan_offsets(handle)

	Scan a PGN file opened in text mode.

Yields the starting offsets of all the games, so that they can be seeked
later. Since actually parsing many games from a big file is relatively
expensive, this is a better way to read only a specific game.

>>> pgn = open("mega.pgn")
>>> offsets = chess.pgn.scan_offsets(pgn)
>>> first_game_offset = next(offsets)
>>> second_game_offset = next(offsets)
>>> pgn.seek(second_game_offset)
>>> second_game = chess.pgn.read_game(pgn)

The PGN standard requires each game to start with an Event-tag. So does this
scanner.

Writing

If you want to export your game game with all headers, comments and variations
you can use:

>>> print(game)
[Event "?"]
[Site "?"]
[Date "????.??.??"]
[Round "?"]
[White "?"]
[Black "?"]
[Result "*"]

1. e4 e5 { Comment } *

Remember that games in files should be separated with extra blank lines.

>>> print(game, file=handle, end="\n\n")

Use exporter objects if you need more control. Exporter objects are used to
allow extensible formatting of PGN like data.

	
class chess.pgn.StringExporter(columns=80)

	Allows exporting a game as a string.

The export method of Game also provides options to include or exclude
headers, variations or comments. By default everything is included.

>>> exporter = chess.pgn.StringExporter()
>>> game.export(exporter, headers=True, variations=True, comments=True)
>>> pgn_string = str(exporter)

Only columns characters are written per line. If columns is None then
the entire movetext will be on a single line. This does not affect header
tags and comments.

There will be no newlines at the end of the string.

	
class chess.pgn.FileExporter(handle, columns=80)

	Like a StringExporter, but games are written directly to a text file.

There will always be a blank line after each game. Handling encodings is up
to the caller.

>>> new_pgn = open("new.pgn", "w")
>>> exporter = chess.pgn.FileExporter(new_pgn)
>>> game.export(exporter)

NAGs

Numeric anotation glyphs describe moves and positions using standardized codes
that are understood by many chess programs. During PGN parsing, annotations
like !, ?, !!, etc. are also converted to NAGs.

	
NAG_NULL = 0

	

	
NAG_GOOD_MOVE = 1

	A good move. Can also be indicated by ! in PGN notation.

	
NAG_MISTAKE = 2

	A mistake. Can also be indicated by ? in PGN notation.

	
NAG_BRILLIANT_MOVE = 3

	A brilliant move. Can also be indicated by !! in PGN notation.

	
NAG_BLUNDER = 4

	A blunder. Can also be indicated by ?? in PGN notation.

	
NAG_SPECULATIVE_MOVE = 5

	A speculative move. Can also be indicated by !? in PGN notation.

	
NAG_DUBIOUS_MOVE = 6

	A dubious move. Can also be indicated by ?! in PGN notation.

 Copyright 2014, Niklas Fiekas.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	python-chess 0.4.2 documentation

Polyglot opening book reading

	
chess.polyglot.open_reader(path)

	Creates a reader for the file at the given path.

>>> with open_reader("data/opening-books/performance.bin") as reader:
>>> entries = reader.get_entries_for_position(board)

	
class chess.polyglot.Entry

	An entry from a polyglot opening book.

	
key

	The Zobrist hash of the position.

	
raw_move

	The raw binary representation of the move. Use the move() method to
extract a move object from this.

	
weight

	An integer value that can be used as the weight for this entry.

	
learn

	Another integer value that can be used for extra information.

	
move()

	Gets the move (as a Move object).

	
class chess.polyglot.Reader(handle)

	A reader for a polyglot opening book opened in binary mode. The file has to
be seekable.

Provides methods to seek entries for specific positions but also ways to
efficiently use the opening book like a list.

>>> # Get the number of entries
>>> len(reader)
92954

>>> # Get the nth entry
>>> entry = reader[n]

>>> # Iteration
>>> for entry in reader:
>>> pass

>>> # Backwards iteration
>>> for entry in reversed(reader):
>>> pass

	
seek_entry(offset, whence=0)

	Seek an entry by its index.

Translated directly to a low level seek on the binary file. whence is
equivalent.

	
seek_position(position)

	Seek the first entry for the given position.

Raises KeyError if there are no entries for the position.

	
next_raw()

	Reads the next raw entry as a tuple.

Raises StopIteration at the EOF.

	
next()

	Reads the next Entry.

Raises StopIteration at the EOF.

	
get_entries_for_position(position)

	Seeks a specific position and yields all entries.

	
chess.POLYGLOT_RANDOM_ARRAY = [0x9D39247E33776D41, ..., 0xF8D626AAAF278509]

	Array of 781 polyglot compatible pseudo random values for Zobrist hashing.

 Copyright 2014, Niklas Fiekas.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	python-chess 0.4.2 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

A

 	

 	add_main_variation() (chess.pgn.GameNode method)

 	add_variation() (chess.pgn.GameNode method)

 	

 	attackers() (chess.Bitboard method)

B

 	

 	Bitboard (class in chess)

 	

 	board() (chess.pgn.Game method)

 	

 	(chess.pgn.GameNode method)

C

 	

 	can_claim_draw() (chess.Bitboard method)

 	can_claim_fifty_moves() (chess.Bitboard method)

 	can_claim_threefold_repitition() (chess.Bitboard method)

 	castling_rights (Bitboard attribute)

 	chess.A1 (built-in variable)

 	chess.B1 (built-in variable)

 	chess.BISHOP (built-in variable)

 	chess.BLACK (built-in variable)

 	chess.CASTLING (built-in variable)

 	chess.CASTLING_BLACK (built-in variable)

 	chess.CASTLING_BLACK_KINGSIDE (built-in variable)

 	chess.CASTLING_BLACK_QUEENSIDE (built-in variable)

 	chess.CASTLING_NONE (built-in variable)

 	chess.CASTLING_WHITE (built-in variable)

 	chess.CASTLING_WHITE_KINGSIDE (built-in variable)

 	chess.CASTLING_WHITE_QUEENSIDE (built-in variable)

 	

 	chess.FILE_NAMES (built-in variable)

 	chess.H8 (built-in variable)

 	chess.KING (built-in variable)

 	chess.KNIGHT (built-in variable)

 	chess.NONE (built-in variable)

 	chess.PAWN (built-in variable)

 	chess.POLYGLOT_RANDOM_ARRAY (built-in variable)

 	chess.QUEEN (built-in variable)

 	chess.ROOK (built-in variable)

 	chess.SQUARE_NAMES (built-in variable)

 	chess.SQUARES (built-in variable)

 	chess.WHITE (built-in variable)

 	clear() (chess.Bitboard method)

 	color (Piece attribute)

 	comment (GameNode attribute)

D

 	

 	demote() (chess.pgn.GameNode method)

E

 	

 	end() (chess.pgn.GameNode method)

 	Entry (class in chess.polyglot)

 	

 	ep_square (Bitboard attribute)

 	epd() (chess.Bitboard method)

F

 	

 	fen() (chess.Bitboard method)

 	file_index() (in module chess)

 	FileExporter (class in chess.pgn)

 	from_square (Move attribute)

 	

 	from_symbol() (chess.Piece class method)

 	from_uci() (chess.Move class method)

 	fullmove_number (Bitboard attribute)

G

 	

 	Game (class in chess.pgn)

 	GameNode (class in chess.pgn)

 	

 	get_entries_for_position() (chess.polyglot.Reader method)

H

 	

 	halfmove_clock (Bitboard attribute)

 	has_variation() (chess.pgn.GameNode method)

 	

 	headers (Game attribute)

I

 	

 	is_attacked_by() (chess.Bitboard method)

 	is_check() (chess.Bitboard method)

 	is_checkmate() (chess.Bitboard method)

 	is_fivefold_repitition() (chess.Bitboard method)

 	is_game_over() (chess.Bitboard method)

 	is_insufficient_material() (chess.Bitboard method)

 	

 	is_into_check() (chess.Bitboard method)

 	is_main_line() (chess.pgn.GameNode method)

 	is_main_variation() (chess.pgn.GameNode method)

 	is_seventyfive_moves() (chess.Bitboard method)

 	is_stalemate() (chess.Bitboard method)

K

 	

 	key (Entry attribute)

L

 	

 	learn (Entry attribute)

 	

 	legal_moves (Bitboard attribute)

M

 	

 	Move (class in chess)

 	move (GameNode attribute)

 	

 	move() (chess.polyglot.Entry method)

N

 	

 	NAG_BLUNDER (built-in variable)

 	NAG_BRILLIANT_MOVE (built-in variable)

 	NAG_DUBIOUS_MOVE (built-in variable)

 	NAG_GOOD_MOVE (built-in variable)

 	NAG_MISTAKE (built-in variable)

 	NAG_NULL (built-in variable)

 	

 	NAG_SPECULATIVE_MOVE (built-in variable)

 	nags (GameNode attribute)

 	next() (chess.polyglot.Reader method)

 	next_raw() (chess.polyglot.Reader method)

 	null() (chess.Move class method)

O

 	

 	open_reader() (in module chess.polyglot)

P

 	

 	parent (GameNode attribute)

 	parse_san() (chess.Bitboard method)

 	peek() (chess.Bitboard method)

 	Piece (class in chess)

 	piece_at() (chess.Bitboard method)

 	piece_type (Piece attribute)

 	piece_type_at() (chess.Bitboard method)

 	

 	pop() (chess.Bitboard method)

 	promote() (chess.pgn.GameNode method)

 	promote_to_main() (chess.pgn.GameNode method)

 	promotion (Move attribute)

 	pseudo_legal_moves (Bitboard attribute)

 	push() (chess.Bitboard method)

 	push_san() (chess.Bitboard method)

R

 	

 	rank_index() (in module chess)

 	raw_move (Entry attribute)

 	read_game() (in module chess.pgn)

 	Reader (class in chess.polyglot)

 	

 	remove_piece_at() (chess.Bitboard method)

 	remove_variation() (chess.pgn.GameNode method)

 	reset() (chess.Bitboard method)

 	root() (chess.pgn.GameNode method)

S

 	

 	san() (chess.Bitboard method)

 	scan_offsets() (in module chess.pgn)

 	seek_entry() (chess.polyglot.Reader method)

 	seek_position() (chess.polyglot.Reader method)

 	set_epd() (chess.Bitboard method)

 	set_fen() (chess.Bitboard method)

 	set_piece_at() (chess.Bitboard method)

 	

 	setup() (chess.pgn.Game method)

 	starting_comment (GameNode attribute)

 	STARTING_FEN (in module chess)

 	starts_variation() (chess.pgn.GameNode method)

 	status() (chess.Bitboard method)

 	StringExporter (class in chess.pgn)

 	symbol() (chess.Piece method)

T

 	

 	to_square (Move attribute)

 	

 	turn (Bitboard attribute)

U

 	

 	uci() (chess.Move method)

V

 	

 	variation() (chess.pgn.GameNode method)

 	

 	variations (GameNode attribute)

W

 	

 	was_into_check() (chess.Bitboard method)

 	

 	weight (Entry attribute)

Z

 	

 	zobrist_hash() (chess.Bitboard method)

 Copyright 2014, Niklas Fiekas.
 Created using Sphinx 1.2.2.

 _static/down-pressed.png

search.html

 Navigation

 		
 index

 		python-chess 0.4.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Niklas Fiekas.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/minus.png

_static/comment.png

_static/up.png

_static/down.png

_static/ajax-loader.gif

_static/comment-close.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

