
python-chess
Release 0.31.1

unknown

May 05, 2020

CONTENTS

1 Introduction 3

2 Documentation 5

3 Features 7

4 Installing 11

5 Selected use cases 13

6 Acknowledgements 15

7 License 17

8 Contents 19
8.1 Core . 19
8.2 PGN parsing and writing . 34
8.3 Polyglot opening book reading . 41
8.4 Gaviota endgame tablebase probing . 42
8.5 Syzygy endgame tablebase probing . 44
8.6 UCI/XBoard engine communication . 46
8.7 SVG rendering . 57
8.8 Variants . 58
8.9 Changelog for python-chess . 60

9 Indices and tables 89

Index 91

i

ii

python-chess, Release 0.31.1

CONTENTS 1

https://travis-ci.org/niklasf/python-chess
https://ci.appveyor.com/project/niklasf/python-chess
https://coveralls.io/github/niklasf/python-chess?branch=master
https://pypi.python.org/pypi/python-chess
https://python-chess.readthedocs.io/en/latest/
https://gitter.im/python-chess/community?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge

python-chess, Release 0.31.1

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

python-chess is a pure Python chess library with move generation, move validation and support for common formats.
This is the Scholar’s mate in python-chess:

>>> import chess

>>> board = chess.Board()

>>> board.legal_moves
<LegalMoveGenerator at ... (Nh3, Nf3, Nc3, Na3, h3, g3, f3, e3, d3, c3, ...)>
>>> chess.Move.from_uci("a8a1") in board.legal_moves
False

>>> board.push_san("e4")
Move.from_uci('e2e4')
>>> board.push_san("e5")
Move.from_uci('e7e5')
>>> board.push_san("Qh5")
Move.from_uci('d1h5')
>>> board.push_san("Nc6")
Move.from_uci('b8c6')
>>> board.push_san("Bc4")
Move.from_uci('f1c4')
>>> board.push_san("Nf6")
Move.from_uci('g8f6')
>>> board.push_san("Qxf7")
Move.from_uci('h5f7')

>>> board.is_checkmate()
True

>>> board
Board('r1bqkb1r/pppp1Qpp/2n2n2/4p3/2B1P3/8/PPPP1PPP/RNB1K1NR b KQkq - 0 4')

3

python-chess, Release 0.31.1

4 Chapter 1. Introduction

CHAPTER

TWO

DOCUMENTATION

• Core

• PGN parsing and writing

• Polyglot opening book reading

• Gaviota endgame tablebase probing

• Syzygy endgame tablebase probing

• UCI/XBoard engine communication

• Variants

• Changelog

5

https://python-chess.readthedocs.io/en/latest/core.html
https://python-chess.readthedocs.io/en/latest/pgn.html
https://python-chess.readthedocs.io/en/latest/polyglot.html
https://python-chess.readthedocs.io/en/latest/gaviota.html
https://python-chess.readthedocs.io/en/latest/syzygy.html
https://python-chess.readthedocs.io/en/latest/engine.html
https://python-chess.readthedocs.io/en/latest/variant.html
https://python-chess.readthedocs.io/en/latest/changelog.html

python-chess, Release 0.31.1

6 Chapter 2. Documentation

CHAPTER

THREE

FEATURES

• Supports Python 3.6+ and PyPy3.

• IPython/Jupyter Notebook integration. SVG rendering docs.

>>> board

• Chess variants: Standard, Chess960, Suicide, Giveaway, Atomic, King of the Hill, Racing Kings, Horde, Three-
check, Crazyhouse. Variant docs.

• Make and unmake moves.

7

https://python-chess.readthedocs.io/en/latest/svg.html
https://python-chess.readthedocs.io/en/latest/variant.html

python-chess, Release 0.31.1

>>> Nf3 = chess.Move.from_uci("g1f3")
>>> board.push(Nf3) # Make the move

>>> board.pop() # Unmake the last move
Move.from_uci('g1f3')

• Show a simple ASCII board.

>>> board = chess.Board("r1bqkb1r/pppp1Qpp/2n2n2/4p3/2B1P3/8/PPPP1PPP/RNB1K1NR b
→˓KQkq - 0 4")
>>> print(board)
r . b q k b . r
p p p p . Q p p
. . n . . n . .
. . . . p . . .
. . B . P . . .
.
P P P P . P P P
R N B . K . N R

• Detects checkmates, stalemates and draws by insufficient material.

>>> board.is_stalemate()
False
>>> board.is_insufficient_material()
False
>>> board.is_game_over()
True

• Detects repetitions. Has a half-move clock.

>>> board.can_claim_threefold_repetition()
False
>>> board.halfmove_clock
0
>>> board.can_claim_fifty_moves()
False
>>> board.can_claim_draw()
False

With the new rules from July 2014, a game ends as a draw (even without a claim) once a fivefold repetition
occurs or if there are 75 moves without a pawn push or capture. Other ways of ending a game take precedence.

>>> board.is_fivefold_repetition()
False
>>> board.is_seventyfive_moves()
False

• Detects checks and attacks.

>>> board.is_check()
True
>>> board.is_attacked_by(chess.WHITE, chess.E8)
True

>>> attackers = board.attackers(chess.WHITE, chess.F3)
>>> attackers

(continues on next page)

8 Chapter 3. Features

python-chess, Release 0.31.1

(continued from previous page)

SquareSet(0x0000_0000_0000_4040)
>>> chess.G2 in attackers
True
>>> print(attackers)
.
.
.
.
.
.
. 1 .
. 1 .

• Parses and creates SAN representation of moves.

>>> board = chess.Board()
>>> board.san(chess.Move(chess.E2, chess.E4))
'e4'
>>> board.parse_san('Nf3')
Move.from_uci('g1f3')
>>> board.variation_san([chess.Move.from_uci(m) for m in ["e2e4", "e7e5", "g1f3
→˓"]])
'1. e4 e5 2. Nf3'

• Parses and creates FENs, extended FENs and Shredder FENs.

>>> board.fen()
'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1'
>>> board.shredder_fen()
'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w HAha - 0 1'
>>> board = chess.Board("8/8/8/2k5/4K3/8/8/8 w - - 4 45")
>>> board.piece_at(chess.C5)
Piece.from_symbol('k')

• Parses and creates EPDs.

>>> board = chess.Board()
>>> board.epd(bm=board.parse_uci("d2d4"))
'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - bm d4;'

>>> ops = board.set_epd("1k1r4/pp1b1R2/3q2pp/4p3/2B5/4Q3/PPP2B2/2K5 b - - bm Qd1+;
→˓ id \"BK.01\";")
>>> ops == {'bm': [chess.Move.from_uci('d6d1')], 'id': 'BK.01'}
True

• Detects absolute pins and their directions.

• Reads Polyglot opening books. Docs.

>>> import chess.polyglot

>>> book = chess.polyglot.open_reader("data/polyglot/performance.bin")

>>> board = chess.Board()
>>> main_entry = book.find(board)
>>> main_entry.move
Move.from_uci('e2e4')

(continues on next page)

9

https://python-chess.readthedocs.io/en/latest/core.html#chess.Board.pin
https://python-chess.readthedocs.io/en/latest/polyglot.html

python-chess, Release 0.31.1

(continued from previous page)

>>> main_entry.weight
1

>>> book.close()

• Reads and writes PGNs. Supports headers, comments, NAGs and a tree of variations. Docs.

>>> import chess.pgn

>>> with open("data/pgn/molinari-bordais-1979.pgn") as pgn:
... first_game = chess.pgn.read_game(pgn)

>>> first_game.headers["White"]
'Molinari'
>>> first_game.headers["Black"]
'Bordais'

>>> first_game.mainline()
<Mainline at ... (1. e4 c5 2. c4 Nc6 3. Ne2 Nf6 4. Nbc3 Nb4 5. g3 Nd3#)>

>>> first_game.headers["Result"]
'0-1'

• Probe Gaviota endgame tablebases (DTM, WDL). Docs.

• Probe Syzygy endgame tablebases (DTZ, WDL). Docs.

>>> import chess.syzygy

>>> tablebase = chess.syzygy.open_tablebase("data/syzygy/regular")

>>> # Black to move is losing in 53 half moves (distance to zero) in this
>>> # KNBvK endgame.
>>> board = chess.Board("8/2K5/4B3/3N4/8/8/4k3/8 b - - 0 1")
>>> tablebase.probe_dtz(board)
-53

>>> tablebase.close()

• Communicate with UCI/XBoard engines. Based on asyncio. Docs.

>>> import chess.engine

>>> engine = chess.engine.SimpleEngine.popen_uci("stockfish")

>>> board = chess.Board("1k1r4/pp1b1R2/3q2pp/4p3/2B5/4Q3/PPP2B2/2K5 b - - 0 1")
>>> limit = chess.engine.Limit(time=2.0)
>>> engine.play(board, limit)
<PlayResult at ... (move=d6d1, ponder=c1d1, info={...}, draw_offered=False,
→˓resigned=False)>

>>> engine.quit()

10 Chapter 3. Features

https://python-chess.readthedocs.io/en/latest/pgn.html
https://python-chess.readthedocs.io/en/latest/gaviota.html
https://python-chess.readthedocs.io/en/latest/syzygy.html
https://python-chess.readthedocs.io/en/latest/engine.html

CHAPTER

FOUR

INSTALLING

Download and install the latest release:

pip install python-chess

11

python-chess, Release 0.31.1

12 Chapter 4. Installing

CHAPTER

FIVE

SELECTED USE CASES

If you like, let me know if you are creating something interesting with python-chess, for example:

• a stand-alone chess computer based on DGT board – http://www.picochess.org/

• a website to probe Syzygy endgame tablebases – https://syzygy-tables.info/

• deep learning for Crazyhouse – https://github.com/QueensGambit/CrazyAra

• a bridge between Lichess API and chess engines – https://github.com/careless25/lichess-bot

• a command-line PGN annotator – https://github.com/rpdelaney/python-chess-annotator

• an HTTP microservice to render board images – https://github.com/niklasf/web-boardimage

• a JIT compiled chess engine – https://github.com/SamRagusa/Batch-First

• a GUI to play against UCI chess engines – http://johncheetham.com/projects/jcchess/

• teaching Cognitive Science – https://jupyter.brynmawr.edu

• an Alexa skill to play blindfold chess – https://github.com/laynr/blindfold-chess

13

http://www.picochess.org/
https://syzygy-tables.info/
https://github.com/QueensGambit/CrazyAra
https://github.com/careless25/lichess-bot
https://github.com/rpdelaney/python-chess-annotator
https://github.com/niklasf/web-boardimage
https://github.com/SamRagusa/Batch-First
http://johncheetham.com/projects/jcchess/
https://jupyter.brynmawr.edu/services/public/dblank/CS371%20Cognitive%20Science/2016-Fall/Programming%20a%20Chess%20Player.ipynb
https://www.amazon.com/Laynr-blindfold-chess/dp/B0859QF8YL
https://github.com/laynr/blindfold-chess

python-chess, Release 0.31.1

14 Chapter 5. Selected use cases

CHAPTER

SIX

ACKNOWLEDGEMENTS

Thanks to the Stockfish authors and thanks to Sam Tannous for publishing his approach to avoid rotated bitboards with
direct lookup (PDF) alongside his GPL2+ engine Shatranj. Some move generation ideas are taken from these sources.

Thanks to Ronald de Man for his Syzygy endgame tablebases. The probing code in python-chess is very directly
ported from his C probing code.

15

http://arxiv.org/pdf/0704.3773.pdf
http://arxiv.org/pdf/0704.3773.pdf
https://github.com/stannous/shatranj
https://github.com/syzygy1/tb

python-chess, Release 0.31.1

16 Chapter 6. Acknowledgements

CHAPTER

SEVEN

LICENSE

python-chess is licensed under the GPL 3 (or any later version at your option). Check out LICENSE.txt for the full
text.

17

python-chess, Release 0.31.1

18 Chapter 7. License

CHAPTER

EIGHT

CONTENTS

8.1 Core

8.1.1 Colors

Constants for the side to move or the color of a piece.

chess.WHITE: chess.Color = True

chess.BLACK: chess.Color = False

You can get the opposite color using not color.

8.1.2 Piece types

chess.PAWN: chess.PieceType = 1

chess.KNIGHT: chess.PieceType = 2

chess.BISHOP: chess.PieceType = 3

chess.ROOK: chess.PieceType = 4

chess.QUEEN: chess.PieceType = 5

chess.KING: chess.PieceType = 6

chess.piece_symbol(piece_type: PieceType, _PIECE_SYMBOLS: List[Optional[str]] = [None, 'p', 'n',
'b', 'r', 'q', 'k'])→ str

chess.piece_name(piece_type: PieceType)→ str

8.1.3 Squares

chess.A1: chess.Square = 0

chess.B1: chess.Square = 1

and so on to

chess.G8: chess.Square = 62

chess.H8: chess.Square = 63

chess.SQUARES = [chess.A1, chess.B1, ..., chess.G8, chess.H8]

chess.SQUARE_NAMES = ['a1', 'b1', ..., 'g8', 'h8']

19

python-chess, Release 0.31.1

chess.FILE_NAMES = ['a', 'b', ..., 'g', 'h']

chess.RANK_NAMES = ['1', '2', ..., '7', '8']

chess.square(file_index: int, rank_index: int)→ Square
Gets a square number by file and rank index.

chess.square_file(square: Square)→ int
Gets the file index of the square where 0 is the a-file.

chess.square_rank(square: Square)→ int
Gets the rank index of the square where 0 is the first rank.

chess.square_name(square: Square)→ str
Gets the name of the square, like a3.

chess.square_distance(a: Square, b: Square)→ int
Gets the distance (i.e., the number of king steps) from square a to b.

chess.square_mirror(square: Square)→ Square
Mirrors the square vertically.

8.1.4 Pieces

class chess.Piece(piece_type: PieceType, color: Color)
A piece with type and color.

piece_type: chess.PieceType
The piece type.

color: chess.Color
The piece color.

symbol()→ str
Gets the symbol P, N, B, R, Q or K for white pieces or the lower-case variants for the black pieces.

unicode_symbol(*, invert_color: bool = False)→ str
Gets the Unicode character for the piece.

classmethod from_symbol(symbol: str)→ ’Piece’
Creates a Piece instance from a piece symbol.

Raises ValueError if the symbol is invalid.

8.1.5 Moves

class chess.Move(from_square: Square, to_square: Square, promotion: Optional[PieceType] = None,
drop: Optional[PieceType] = None)

Represents a move from a square to a square and possibly the promotion piece type.

Drops and null moves are supported.

from_square: chess.Square
The source square.

to_square: chess.Square
The target square.

promotion: Optional[chess.PieceType]
The promotion piece type or None.

20 Chapter 8. Contents

python-chess, Release 0.31.1

drop: Optional[chess.PieceType]
The drop piece type or None.

uci()→ str
Gets a UCI string for the move.

For example, a move from a7 to a8 would be a7a8 or a7a8q (if the latter is a promotion to a queen).

The UCI representation of a null move is 0000.

classmethod from_uci(uci: str)→ ’Move’
Parses a UCI string.

Raises ValueError if the UCI string is invalid.

classmethod null()→ ’Move’
Gets a null move.

A null move just passes the turn to the other side (and possibly forfeits en passant capturing). Null moves
evaluate to False in boolean contexts.

>>> import chess
>>>
>>> bool(chess.Move.null())
False

8.1.6 Board

chess.STARTING_FEN = 'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1'
The FEN for the standard chess starting position.

chess.STARTING_BOARD_FEN = 'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR'
The board part of the FEN for the standard chess starting position.

class chess.Board(fen: Optional[str] = 'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq
- 0 1', *, chess960: bool = False)

A BaseBoard, additional information representing a chess position, and a move stack.

Provides move generation, validation, parsing, attack generation, game end detection, and the
capability to make and unmake moves.

The board is initialized to the standard chess starting position, unless otherwise specified in the optional fen
argument. If fen is None, an empty board is created.

Optionally supports chess960. In Chess960, castling moves are encoded by a king move to the corresponding
rook square. Use chess.Board.from_chess960_pos() to create a board with one of the Chess960
starting positions.

It’s safe to set turn, castling_rights, ep_square, halfmove_clock and fullmove_number
directly.

Warning: It is possible to set up and work with invalid positions. In this case Board implements a kind
of “pseudo-chess” (useful to gracefully handle errors or to implement chess variants). Use is_valid()
to detect invalid positions.

turn: chess.Color
The side to move (chess.WHITE or chess.BLACK).

8.1. Core 21

python-chess, Release 0.31.1

castling_rights: chess.Bitboard
Bitmask of the rooks with castling rights.

To test for specific squares:

>>> import chess
>>>
>>> board = chess.Board()
>>> bool(board.castling_rights & chess.BB_H1) # White can castle with the h1
→˓rook
True

To add a specific square:

>>> board.castling_rights |= chess.BB_A1

Use set_castling_fen() to set multiple castling rights. Also see has_castling_rights(),
has_kingside_castling_rights(), has_queenside_castling_rights(),
has_chess960_castling_rights(), clean_castling_rights().

ep_square: Optional[chess.Square]
The potential en passant square on the third or sixth rank or None.

Use has_legal_en_passant() to test if en passant capturing would actually be possible on the next
move.

fullmove_number: int
Counts move pairs. Starts at 1 and is incremented after every move of the black side.

halfmove_clock: int
The number of half-moves since the last capture or pawn move.

promoted: chess.Bitboard
A bitmask of pieces that have been promoted.

chess960: bool
Whether the board is in Chess960 mode. In Chess960 castling moves are represented as king moves to the
corresponding rook square.

legal_moves = chess.LegalMoveGenerator(self)
A dynamic list of legal moves.

>>> import chess
>>>
>>> board = chess.Board()
>>> board.legal_moves.count()
20
>>> bool(board.legal_moves)
True
>>> move = chess.Move.from_uci("g1f3")
>>> move in board.legal_moves
True

Wraps generate_legal_moves() and is_legal().

pseudo_legal_moves = chess.PseudoLegalMoveGenerator(self)
A dynamic list of pseudo-legal moves, much like the legal move list.

Pseudo-legal moves might leave or put the king in check, but are otherwise valid. Null moves are not
pseudo-legal. Castling moves are only included if they are completely legal.

Wraps generate_pseudo_legal_moves() and is_pseudo_legal().

22 Chapter 8. Contents

python-chess, Release 0.31.1

move_stack: List[chess.Move]
The move stack. Use Board.push(), Board.pop(), Board.peek() and Board.
clear_stack() for manipulation.

reset()→ None
Restores the starting position.

reset_board()→ None
Resets piece positions to the starting position.

clear()→ None
Clears the board.

Resets move stack and move counters. The side to move is white. There are no rooks or kings, so castling
rights are removed.

In order to be in a valid status(), at least kings need to be put on the board.

clear_board()→ None
Clears the board.

clear_stack()→ None
Clears the move stack.

root()→ BoardT
Returns a copy of the root position.

remove_piece_at(square: Square)→ Optional[Piece]
Removes the piece from the given square. Returns the Piece or None if the square was already empty.

set_piece_at(square: Square, piece: Optional[Piece], promoted: bool = False)→ None
Sets a piece at the given square.

An existing piece is replaced. Setting piece to None is equivalent to remove_piece_at().

checkers()→ ’SquareSet’
Gets the pieces currently giving check.

Returns a set of squares.

is_check()→ bool
Tests if the current side to move is in check.

gives_check(move: Move)→ bool
Probes if the given move would put the opponent in check. The move must be at least pseudo-legal.

is_variant_end()→ bool
Checks if the game is over due to a special variant end condition.

Note, for example, that stalemate is not considered a variant-specific end condition (this method will
return False), yet it can have a special result in suicide chess (any of is_variant_loss(),
is_variant_win(), is_variant_draw() might return True).

is_variant_loss()→ bool
Checks if the current side to move lost due to a variant-specific condition.

is_variant_win()→ bool
Checks if the current side to move won due to a variant-specific condition.

is_variant_draw()→ bool
Checks if a variant-specific drawing condition is fulfilled.

8.1. Core 23

python-chess, Release 0.31.1

is_game_over(*, claim_draw: bool = False)→ bool
Checks if the game is over due to checkmate, stalemate, insufficient material, the
seventyfive-move rule, fivefold repetition or a variant end condition.

The game is not considered to be over by the fifty-move rule or threefold repetition,
unless claim_draw is given. Note that checking the latter can be slow.

result(*, claim_draw: bool = False)→ str
Gets the game result.

1-0, 0-1 or 1/2-1/2 if the game is over. Otherwise, the result is undetermined: *.

is_checkmate()→ bool
Checks if the current position is a checkmate.

is_stalemate()→ bool
Checks if the current position is a stalemate.

is_insufficient_material()→ bool
Checks if neither side has sufficient winning material (has_insufficient_material()).

has_insufficient_material(color: Color)→ bool
Checks if color has insufficient winning material.

This is guaranteed to return False if color can still win the game.

The converse does not necessarily hold: The implementation only looks at the material, including the
colors of bishops, but not considering piece positions. So fortress positions or positions with forced lines
may return False, even though there is no possible winning line.

is_seventyfive_moves()→ bool
Since the 1st of July 2014, a game is automatically drawn (without a claim by one of the players) if the
half-move clock since a capture or pawn move is equal to or greater than 150. Other means to end a game
take precedence.

is_fivefold_repetition()→ bool
Since the 1st of July 2014 a game is automatically drawn (without a claim by one of the players) if a
position occurs for the fifth time. Originally this had to occur on consecutive alternating moves, but this
has since been revised.

can_claim_draw()→ bool
Checks if the side to move can claim a draw by the fifty-move rule or by threefold repetition.

Note that checking the latter can be slow.

can_claim_fifty_moves()→ bool
Draw by the fifty-move rule can be claimed once the clock of halfmoves since the last capture or pawn
move becomes equal or greater to 100 and the side to move still has a legal move they can make.

can_claim_threefold_repetition()→ bool
Draw by threefold repetition can be claimed if the position on the board occured for the third time or if
such a repetition is reached with one of the possible legal moves.

Note that checking this can be slow: In the worst case scenario, every legal move has to be tested and the
entire game has to be replayed because there is no incremental transposition table.

is_repetition(count: int = 3)→ bool
Checks if the current position has repeated 3 (or a given number of) times.

Unlike can_claim_threefold_repetition(), this does not consider a repetition that can be
played on the next move.

24 Chapter 8. Contents

python-chess, Release 0.31.1

Note that checking this can be slow: In the worst case, the entire game has to be replayed because there is
no incremental transposition table.

push(move: Move)→ None
Updates the position with the given move and puts it onto the move stack.

>>> import chess
>>>
>>> board = chess.Board()
>>>
>>> Nf3 = chess.Move.from_uci("g1f3")
>>> board.push(Nf3) # Make the move

>>> board.pop() # Unmake the last move
Move.from_uci('g1f3')

Null moves just increment the move counters, switch turns and forfeit en passant capturing.

Warning: Moves are not checked for legality. It is the caller’s responsibility to ensure that the move
is at least pseudo-legal or a null move.

pop()→ Move
Restores the previous position and returns the last move from the stack.

Raises IndexError if the stack is empty.

peek()→ Move
Gets the last move from the move stack.

Raises IndexError if the move stack is empty.

find_move(from_square: Square, to_square: Square, promotion: PieceType = None)→ Move
Finds a matching legal move for an origin square, a target square and an optional promotion piece type.

For pawn moves to the backrank, the promotion piece type defaults to chess.QUEEN , unless otherwise
specified.

Castling moves are normalized to king moves by two steps, except in Chess960.

Raises ValueError if no matching legal move is found.

has_pseudo_legal_en_passant()→ bool
Checks if there is a pseudo-legal en passant capture.

has_legal_en_passant()→ bool
Checks if there is a legal en passant capture.

fen(*, shredder: bool = False, en_passant: str = 'legal', promoted: Optional[bool] = None)→ str
Gets a FEN representation of the position.

A FEN string (e.g., rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1)
consists of the position part board_fen(), the turn, the castling part (castling_rights), the en
passant square (ep_square), the halfmove_clock and the fullmove_number.

Parameters

• shredder – Use castling_shredder_fen() and encode castling rights by the
file of the rook (like HAha) instead of the default castling_xfen() (like KQkq).

8.1. Core 25

python-chess, Release 0.31.1

• en_passant – By default, only fully legal en passant squares are included
(has_legal_en_passant()). Pass fen to strictly follow the FEN specification (al-
ways include the en passant square after a two-step pawn move) or xfen to follow the
X-FEN specification (has_pseudo_legal_en_passant()).

• promoted – Mark promoted pieces like Q~. By default, this is only enabled in chess
variants where this is relevant.

set_fen(fen: str)→ None
Parses a FEN and sets the position from it.

Raises ValueError if the FEN string is invalid.

set_castling_fen(castling_fen: str)→ None
Sets castling rights from a string in FEN notation like Qqk.

Raises ValueError if the castling FEN is syntactically invalid.

set_board_fen(fen: str)→ None
Parses a FEN and sets the board from it.

Raises ValueError if the FEN string is invalid.

set_piece_map(pieces: Mapping[Square, Piece])→ None
Sets up the board from a dictionary of pieces by square index.

set_chess960_pos(sharnagl: int)→ None
Sets up a Chess960 starting position given its index between 0 and 959. Also see
from_chess960_pos().

chess960_pos(*, ignore_turn: bool = False, ignore_castling: bool = False, ignore_counters: bool =
True)→ Optional[int]

Gets the Chess960 starting position index between 0 and 956 or None if the current position is not a
Chess960 starting position.

By default white to move (ignore_turn) and full castling rights (ignore_castling) are required, but move
counters (ignore_counters) are ignored.

epd(*, shredder: bool = False, en_passant: str = 'legal', promoted: Optional[bool] = None, **opera-
tions: Union[None, str, int, float, Move, Iterable[Move]])→ str
Gets an EPD representation of the current position.

See fen() for FEN formatting options (shredder, ep_square and promoted).

EPD operations can be given as keyword arguments. Supported operands are strings, integers, finite floats,
legal moves and None. Aditionally, the operation pv also accepts a legal variation as a list of moves. The
operations bm and bm also accept a list of legal moves in the current position.

The name of the field cannot be a lone dash and cannot contain spaces, newlines, carriage returns or tabs.

hmvc and fmvc are not included by default. You can use:

>>> import chess
>>>
>>> board = chess.Board()
>>> board.epd(hmvc=board.halfmove_clock, fmvc=board.fullmove_number)
'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - hmvc 0; fmvc 1;'

set_epd(epd: str)→ Dict[str, Union[None, str, int, float, Move, List[Move]]]
Parses the given EPD string and uses it to set the position.

If present, hmvc and fmvn are used to set the half-move clock and the full-move number. Otherwise, 0
and 1 are used.

26 Chapter 8. Contents

python-chess, Release 0.31.1

Returns a dictionary of parsed operations. Values can be strings, integers, floats, move objects, or lists of
moves.

Raises ValueError if the EPD string is invalid.

san(move: Move)→ str
Gets the standard algebraic notation of the given move in the context of the current position.

lan(move: Move)→ str
Gets the long algebraic notation of the given move in the context of the current position.

variation_san(variation: Iterable[Move])→ str
Given a sequence of moves, returns a string representing the sequence in standard algebraic notation (e.g.,
1. e4 e5 2. Nf3 Nc6 or 37...Bg6 38. fxg6).

The board will not be modified as a result of calling this.

Raises ValueError if any moves in the sequence are illegal.

parse_san(san: str)→ Move
Uses the current position as the context to parse a move in standard algebraic notation and returns the
corresponding move object.

Ambiguous moves are rejected. Overspecified moves (including long algebraic notation) are accepted.

The returned move is guaranteed to be either legal or a null move.

Raises ValueError if the SAN is invalid, illegal or ambiguous.

push_san(san: str)→ Move
Parses a move in standard algebraic notation, makes the move and puts it on the the move stack.

Returns the move.

Raises ValueError if neither legal nor a null move.

uci(move: Move, *, chess960: Optional[bool] = None)→ str
Gets the UCI notation of the move.

chess960 defaults to the mode of the board. Pass True to force Chess960 mode.

parse_uci(uci: str)→ Move
Parses the given move in UCI notation.

Supports both Chess960 and standard UCI notation.

The returned move is guaranteed to be either legal or a null move.

Raises ValueError if the move is invalid or illegal in the current position (but not a null
move).

push_uci(uci: str)→ Move
Parses a move in UCI notation and puts it on the move stack.

Returns the move.

Raises ValueError if the move is invalid or illegal in the current position (but not a null
move).

is_en_passant(move: Move)→ bool
Checks if the given pseudo-legal move is an en passant capture.

is_capture(move: Move)→ bool
Checks if the given pseudo-legal move is a capture.

8.1. Core 27

python-chess, Release 0.31.1

is_zeroing(move: Move)→ bool
Checks if the given pseudo-legal move is a capture or pawn move.

is_irreversible(move: Move)→ bool
Checks if the given pseudo-legal move is irreversible.

In standard chess, pawn moves, captures, moves that destroy castling rights and moves that cede en passant
are irreversible.

This method has false-negatives with forced lines. For example, a check that will force the king to lose
castling rights is not considered irreversible. Only the actual king move is.

is_castling(move: Move)→ bool
Checks if the given pseudo-legal move is a castling move.

is_kingside_castling(move: Move)→ bool
Checks if the given pseudo-legal move is a kingside castling move.

is_queenside_castling(move: Move)→ bool
Checks if the given pseudo-legal move is a queenside castling move.

clean_castling_rights()→ Bitboard
Returns valid castling rights filtered from castling_rights.

has_castling_rights(color: Color)→ bool
Checks if the given side has castling rights.

has_kingside_castling_rights(color: Color)→ bool
Checks if the given side has kingside (that is h-side in Chess960) castling rights.

has_queenside_castling_rights(color: Color)→ bool
Checks if the given side has queenside (that is a-side in Chess960) castling rights.

has_chess960_castling_rights()→ bool
Checks if there are castling rights that are only possible in Chess960.

status()→ Status
Gets a bitmask of possible problems with the position.

STATUS_VALID if all basic validity requirements are met. This does not imply that the position is actually
reachable with a series of legal moves from the starting position.

Otherwise, bitwise combinations of: STATUS_NO_WHITE_KING,
STATUS_NO_BLACK_KING, STATUS_TOO_MANY_KINGS, STATUS_TOO_MANY_WHITE_PAWNS,
STATUS_TOO_MANY_BLACK_PAWNS, STATUS_PAWNS_ON_BACKRANK,
STATUS_TOO_MANY_WHITE_PIECES, STATUS_TOO_MANY_BLACK_PIECES,
STATUS_BAD_CASTLING_RIGHTS, STATUS_INVALID_EP_SQUARE,
STATUS_OPPOSITE_CHECK, STATUS_EMPTY, STATUS_RACE_CHECK, STATUS_RACE_OVER,
STATUS_RACE_MATERIAL, STATUS_TOO_MANY_CHECKERS.

is_valid()→ bool
Checks some basic validity requirements.

See status() for details.

transform(f: Callable[[Bitboard], Bitboard])→ BoardT
Returns a transformed copy of the board by applying a bitboard transformation function.

Available transformations include chess.flip_vertical(), chess.flip_horizontal(),
chess.flip_diagonal(), chess.flip_anti_diagonal(), chess.shift_down(),
chess.shift_up(), chess.shift_left(), and chess.shift_right().

Alternatively, apply_transform() can be used to apply the transformation in place.

28 Chapter 8. Contents

python-chess, Release 0.31.1

mirror()→ BoardT
Returns a mirrored copy of the board.

The board is mirrored vertically and piece colors are swapped, so that the position is equivalent modulo
color.

copy(*, stack: Union[bool, int] = True)→ BoardT
Creates a copy of the board.

Defaults to copying the entire move stack. Alternatively, stack can be False, or an integer to copy a
limited number of moves.

classmethod empty(*, chess960: bool = False)→ BoardT
Creates a new empty board. Also see clear().

classmethod from_epd(epd: str, *, chess960: bool = False) → Tuple[BoardT, Dict[str,
Union[None, str, int, float, Move, List[Move]]]]

Creates a new board from an EPD string. See set_epd().

Returns the board and the dictionary of parsed operations as a tuple.

classmethod from_chess960_pos(sharnagl: int)→ BoardT
Creates a new board, initialized with a Chess960 starting position.

>>> import chess
>>> import random
>>>
>>> board = chess.Board.from_chess960_pos(random.randint(0, 959))

class chess.BaseBoard(board_fen: Optional[str] = 'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR')
A board representing the position of chess pieces. See Board for a full board with move generation.

The board is initialized with the standard chess starting position, unless otherwise specified in the optional
board_fen argument. If board_fen is None, an empty board is created.

reset_board()→ None
Resets piece positions to the starting position.

clear_board()→ None
Clears the board.

pieces(piece_type: PieceType, color: Color)→ ’SquareSet’
Gets pieces of the given type and color.

Returns a set of squares.

piece_at(square: Square)→ Optional[Piece]
Gets the piece at the given square.

piece_type_at(square: Square)→ Optional[PieceType]
Gets the piece type at the given square.

color_at(square: Square)→ Optional[Color]
Gets the color of the piece at the given square.

king(color: Color)→ Optional[Square]
Finds the king square of the given side. Returns None if there is no king of that color.

In variants with king promotions, only non-promoted kings are considered.

attacks(square: Square)→ ’SquareSet’
Gets the set of attacked squares from the given square.

There will be no attacks if the square is empty. Pinned pieces are still attacking other squares.

8.1. Core 29

python-chess, Release 0.31.1

Returns a set of squares.

is_attacked_by(color: Color, square: Square)→ bool
Checks if the given side attacks the given square.

Pinned pieces still count as attackers. Pawns that can be captured en passant are not considered attacked.

attackers(color: Color, square: Square)→ ’SquareSet’
Gets the set of attackers of the given color for the given square.

Pinned pieces still count as attackers.

Returns a set of squares.

pin(color: Color, square: Square)→ ’SquareSet’
Detects an absolute pin (and its direction) of the given square to the king of the given color.

>>> import chess
>>>
>>> board = chess.Board("rnb1k2r/ppp2ppp/5n2/3q4/1b1P4/2N5/PP3PPP/R1BQKBNR w
→˓KQkq - 3 7")
>>> board.is_pinned(chess.WHITE, chess.C3)
True
>>> direction = board.pin(chess.WHITE, chess.C3)
>>> direction
SquareSet(0x0000_0001_0204_0810)
>>> print(direction)
.
.
.
1
. 1
. . 1
. . . 1
. . . . 1 . . .

Returns a set of squares that mask the rank, file or diagonal of the pin. If there is no pin, then a
mask of the entire board is returned.

is_pinned(color: Color, square: Square)→ bool
Detects if the given square is pinned to the king of the given color.

remove_piece_at(square: Square)→ Optional[Piece]
Removes the piece from the given square. Returns the Piece or None if the square was already empty.

set_piece_at(square: Square, piece: Optional[Piece], promoted: bool = False)→ None
Sets a piece at the given square.

An existing piece is replaced. Setting piece to None is equivalent to remove_piece_at().

board_fen(*, promoted: Optional[bool] = False)→ str
Gets the board FEN.

set_board_fen(fen: str)→ None
Parses a FEN and sets the board from it.

Raises ValueError if the FEN string is invalid.

piece_map()→ Dict[Square, Piece]
Gets a dictionary of pieces by square index.

set_piece_map(pieces: Mapping[Square, Piece])→ None
Sets up the board from a dictionary of pieces by square index.

30 Chapter 8. Contents

python-chess, Release 0.31.1

set_chess960_pos(sharnagl: int)→ None
Sets up a Chess960 starting position given its index between 0 and 959. Also see
from_chess960_pos().

chess960_pos()→ Optional[int]
Gets the Chess960 starting position index between 0 and 959 or None.

unicode(*, invert_color: bool = False, borders: bool = False, empty_square: str = '')→ str
Returns a string representation of the board with Unicode pieces. Useful for pretty-printing to a terminal.

Parameters

• invert_color – Invert color of the Unicode pieces.

• borders – Show borders and a coordinate margin.

transform(f: Callable[[Bitboard], Bitboard])→ BaseBoardT
Returns a transformed copy of the board by applying a bitboard transformation function.

Available transformations include chess.flip_vertical(), chess.flip_horizontal(),
chess.flip_diagonal(), chess.flip_anti_diagonal(), chess.shift_down(),
chess.shift_up(), chess.shift_left(), and chess.shift_right().

Alternatively, apply_transform() can be used to apply the transformation in place.

mirror()→ BaseBoardT
Returns a mirrored copy of the board.

The board is mirrored vertically and piece colors are swapped, so that the position is equivalent modulo
color.

copy()→ BaseBoardT
Creates a copy of the board.

classmethod empty()→ BaseBoardT
Creates a new empty board. Also see clear_board().

classmethod from_chess960_pos(sharnagl: int)→ BaseBoardT
Creates a new board, initialized with a Chess960 starting position.

>>> import chess
>>> import random
>>>
>>> board = chess.Board.from_chess960_pos(random.randint(0, 959))

8.1.7 Square sets

class chess.SquareSet(squares: IntoSquareSet = 0)
A set of squares.

>>> import chess
>>>
>>> squares = chess.SquareSet([chess.A8, chess.A1])
>>> squares
SquareSet(0x0100_0000_0000_0001)

>>> squares = chess.SquareSet(chess.BB_A8 | chess.BB_RANK_1)
>>> squares
SquareSet(0x0100_0000_0000_00ff)

8.1. Core 31

python-chess, Release 0.31.1

>>> print(squares)
1
.
.
.
.
.
.
1 1 1 1 1 1 1 1

>>> len(squares)
9

>>> bool(squares)
True

>>> chess.B1 in squares
True

>>> for square in squares:
... # 0 -- chess.A1
... # 1 -- chess.B1
... # 2 -- chess.C1
... # 3 -- chess.D1
... # 4 -- chess.E1
... # 5 -- chess.F1
... # 6 -- chess.G1
... # 7 -- chess.H1
... # 56 -- chess.A8
... print(square)
...
0
1
2
3
4
5
6
7
56

>>> list(squares)
[0, 1, 2, 3, 4, 5, 6, 7, 56]

Square sets are internally represented by 64-bit integer masks of the included squares. Bitwise operations can
be used to compute unions, intersections and shifts.

>>> int(squares)
72057594037928191

Also supports common set operations like issubset(), issuperset(), union(),
intersection(), difference(), symmetric_difference() and copy() as well as update(),
intersection_update(), difference_update(), symmetric_difference_update() and
clear().

add(square: Square)→ None

32 Chapter 8. Contents

python-chess, Release 0.31.1

Adds a square to the set.

discard(square: Square)→ None
Discards a square from the set.

isdisjoint(other: IntoSquareSet)→ bool
Test if the square sets are disjoint.

issubset(other: IntoSquareSet)→ bool
Test if this square set is a subset of another.

issuperset(other: IntoSquareSet)→ bool
Test if this square set is a superset of another.

remove(square: Square)→ None
Removes a square from the set.

Raises KeyError if the given square was not in the set.

pop()→ Square
Removes a square from the set and returns it.

Raises KeyError on an empty set.

clear()→ None
Remove all elements from this set.

carry_rippler()→ Iterator[Bitboard]
Iterator over the subsets of this set.

mirror()→ ’SquareSet’
Returns a vertically mirrored copy of this square set.

tolist()→ List[bool]
Convert the set to a list of 64 bools.

classmethod from_square(square: Square)→ ’SquareSet’
Creates a SquareSet from a single square.

>>> import chess
>>>
>>> chess.SquareSet.from_square(chess.A1) == chess.BB_A1
True

Common integer masks are:

chess.BB_EMPTY: chess.Bitboard = 0

chess.BB_ALL: chess.Bitboard = 0xFFFF_FFFF_FFFF_FFFF

Single squares:

chess.BB_SQUARES = [chess.BB_A1, chess.BB_B1, ..., chess.BB_G8, chess.BB_H8]

Ranks and files:

chess.BB_RANKS = [chess.BB_RANK_1, ..., chess.BB_RANK_8]

chess.BB_FILES = [chess.BB_FILE_A, ..., chess.BB_FILE_H]

Other masks:

chess.BB_LIGHT_SQUARES: chess.Bitboard = 0x55AA_55AA_55AA_55AA

chess.BB_DARK_SQUARES: chess.Bitboard = 0xAA55_AA55_AA55_AA55

8.1. Core 33

python-chess, Release 0.31.1

chess.BB_BACKRANKS = chess.BB_RANK_1 | chess.BB_RANK_8

chess.BB_CORNERS = chess.BB_A1 | chess.BB_H1 | chess.BB_A8 | chess.BB_H8

chess.BB_CENTER = chess.BB_D4 | chess.BB_E4 | chess.BB_D5 | chess.BB_E5

8.2 PGN parsing and writing

8.2.1 Parsing

chess.pgn.read_game(handle: TextIO, *, Visitor=<class 'chess.pgn.GameBuilder'>)
Reads a game from a file opened in text mode.

>>> import chess.pgn
>>>
>>> pgn = open("data/pgn/kasparov-deep-blue-1997.pgn")
>>>
>>> first_game = chess.pgn.read_game(pgn)
>>> second_game = chess.pgn.read_game(pgn)
>>>
>>> first_game.headers["Event"]
'IBM Man-Machine, New York USA'
>>>
>>> # Iterate through all moves and play them on a board.
>>> board = first_game.board()
>>> for move in first_game.mainline_moves():
... board.push(move)
...
>>> board
Board('4r3/6P1/2p2P1k/1p6/pP2p1R1/P1B5/2P2K2/3r4 b - - 0 45')

By using text mode, the parser does not need to handle encodings. It is the caller’s responsibility to open the
file with the correct encoding. PGN files are usually ASCII or UTF-8 encoded. So, the following should cover
most relevant cases (ASCII, UTF-8, UTF-8 with BOM).

>>> pgn = open("data/pgn/kasparov-deep-blue-1997.pgn", encoding="utf-8-sig")

Use StringIO to parse games from a string.

>>> import io
>>>
>>> pgn = io.StringIO("1. e4 e5 2. Nf3 *")
>>> game = chess.pgn.read_game(pgn)

The end of a game is determined by a completely blank line or the end of the file. (Of course, blank lines in
comments are possible).

According to the PGN standard, at least the usual seven header tags are required for a valid game. This parser
also handles games without any headers just fine.

The parser is relatively forgiving when it comes to errors. It skips over tokens it can not parse. By default, any
exceptions are logged and collected in Game.errors. This behavior can be overriden.

Returns the parsed game or None if the end of file is reached.

34 Chapter 8. Contents

python-chess, Release 0.31.1

8.2.2 Writing

If you want to export your game with all headers, comments and variations, you can do it like this:

>>> import chess
>>> import chess.pgn
>>>
>>> game = chess.pgn.Game()
>>> game.headers["Event"] = "Example"
>>> node = game.add_variation(chess.Move.from_uci("e2e4"))
>>> node = node.add_variation(chess.Move.from_uci("e7e5"))
>>> node.comment = "Comment"
>>>
>>> print(game)
[Event "Example"]
[Site "?"]
[Date "????.??.??"]
[Round "?"]
[White "?"]
[Black "?"]
[Result "*"]

1. e4 e5 { Comment } *

Remember that games in files should be separated with extra blank lines.

>>> print(game, file=open("/dev/null", "w"), end="\n\n")

Use the StringExporter() or FileExporter() visitors if you need more control.

8.2.3 Game model

Games are represented as a tree of moves. Each GameNode can have extra information, such as comments. The root
node of a game (Game extends the GameNode) also holds general information, such as game headers.

class chess.pgn.Game(headers: Optional[Union[Mapping[str, str], Iterable[Tuple[str, str]]]] = None)
The root node of a game with extra information such as headers and the starting position. Also has all the other
properties and methods of GameNode.

headers: chess.pgn.Headers
A mapping of headers. By default, the following 7 headers are provided (Seven Tag Roster):

>>> import chess.pgn
>>>
>>> game = chess.pgn.Game()
>>> game.headers
Headers(Event='?', Site='?', Date='????.??.??', Round='?', White='?', Black='?
→˓', Result='*')

errors: List[Exception]
A list of errors (such as illegal or ambiguous moves) encountered while parsing the game.

setup(board: Union[chess.Board, str])→ None
Sets up a specific starting position. This sets (or resets) the FEN, SetUp, and Variant header tags.

accept(visitor: ‘BaseVisitor[ResultT]’)→ ResultT
Traverses the game in PGN order using the given visitor. Returns the visitor result.

8.2. PGN parsing and writing 35

python-chess, Release 0.31.1

classmethod from_board(board: chess.Board)→ GameT
Creates a game from the move stack of a Board().

classmethod without_tag_roster()→ GameT
Creates an empty game without the default Seven Tag Roster.

class chess.pgn.GameNode

parent: Optional[chess.pgn.GameNode]
The parent node or None if this is the root node of the game.

move: Optional[chess.Move]
The move leading to this node or None if this is the root node of the game.

nags: Set[int] = set()
A set of NAGs as integers. NAGs always go behind a move, so the root node of the game will never have
NAGs.

comment: str = ''
A comment that goes behind the move leading to this node. Comments that occur before any moves are
assigned to the root node.

starting_comment: str = ''
A comment for the start of a variation. Only nodes that actually start a variation
(starts_variation() checks this) can have a starting comment. The root node can not have a
starting comment.

variations: List[chess.pgn.GameNode]
A list of child nodes.

board()→ chess.Board
Gets a board with the position of the node.

For the root node, this is the default starting position (for the Variant) unless the FEN header tag is set.

It’s a copy, so modifying the board will not alter the game.

san()→ str
Gets the standard algebraic notation of the move leading to this node. See chess.Board.san().

Do not call this on the root node.

uci(*, chess960: Optional[bool] = None)→ str
Gets the UCI notation of the move leading to this node. See chess.Board.uci().

Do not call this on the root node.

game()→ ’Game’
Gets the root node, i.e., the game.

end()→ ’GameNode’
Follows the main variation to the end and returns the last node.

is_end()→ bool
Checks if this node is the last node in the current variation.

starts_variation()→ bool
Checks if this node starts a variation (and can thus have a starting comment). The root node does not start
a variation and can have no starting comment.

For example, in 1. e4 e5 (1... c5 2. Nf3) 2. Nf3, the node holding 1. . . c5 starts a varia-
tion.

36 Chapter 8. Contents

python-chess, Release 0.31.1

is_mainline()→ bool
Checks if the node is in the mainline of the game.

is_main_variation()→ bool
Checks if this node is the first variation from the point of view of its parent. The root node is also in the
main variation.

variation(move: Union[int, chess.Move])→ ’GameNode’
Gets a child node by either the move or the variation index.

has_variation(move: chess.Move)→ bool
Checks if the given move appears as a variation.

promote_to_main(move: chess.Move)→ None
Promotes the given move to the main variation.

promote(move: chess.Move)→ None
Moves a variation one up in the list of variations.

demote(move: chess.Move)→ None
Moves a variation one down in the list of variations.

remove_variation(move: chess.Move)→ None
Removes a variation.

add_variation(move: chess.Move, *, comment: str = '', starting_comment: str = '', nags: Iter-
able[int] =)→ ‘GameNode’

Creates a child node with the given attributes.

add_main_variation(move: chess.Move, *, comment: str = '')→ ’GameNode’
Creates a child node with the given attributes and promotes it to the main variation.

mainline()→ ’Mainline[GameNode]’
Returns an iterator over the mainline starting after this node.

mainline_moves()→ ’Mainline[chess.Move]’
Returns an iterator over the main moves after this node.

add_line(moves: Iterable[chess.Move], *, comment: str = '', starting_comment: str = '', nags: Iter-
able[int] =)→ ‘GameNode’

Creates a sequence of child nodes for the given list of moves. Adds comment and nags to the last node of
the line and returns it.

accept(visitor: ‘BaseVisitor[ResultT]’)→ ResultT
Traverses game nodes in PGN order using the given visitor. Starts with the move leading to this node.
Returns the visitor result.

accept_subgame(visitor: ‘BaseVisitor[ResultT]’)→ ResultT
Traverses headers and game nodes in PGN order, as if the game was starting after this node. Returns the
visitor result.

8.2. PGN parsing and writing 37

python-chess, Release 0.31.1

8.2.4 Visitors

Visitors are an advanced concept for game tree traversal.

class chess.pgn.BaseVisitor
Base class for visitors.

Use with chess.pgn.Game.accept() or chess.pgn.GameNode.accept() or chess.pgn.
read_game().

The methods are called in PGN order.

begin_game()→ Optional[SkipType]
Called at the start of a game.

begin_headers()→ Optional[Headers]
Called before visiting game headers.

visit_header(tagname: str, tagvalue: str)→ None
Called for each game header.

end_headers()→ Optional[SkipType]
Called after visiting game headers.

parse_san(board: chess.Board, san: str)→ chess.Move
When the visitor is used by a parser, this is called to parse a move in standard algebraic notation.

You can override the default implementation to work around specific quirks of your input format.

visit_move(board: chess.Board, move: chess.Move)→ None
Called for each move.

board is the board state before the move. The board state must be restored before the traversal continues.

visit_board(board: chess.Board)→ None
Called for the starting position of the game and after each move.

The board state must be restored before the traversal continues.

visit_comment(comment: str)→ None
Called for each comment.

visit_nag(nag: int)→ None
Called for each NAG.

begin_variation()→ Optional[SkipType]
Called at the start of a new variation. It is not called for the mainline of the game.

end_variation()→ None
Concludes a variation.

visit_result(result: str)→ None
Called at the end of a game with the value from the Result header.

end_game()→ None
Called at the end of a game.

abstract result()→ ResultT
Called to get the result of the visitor.

handle_error(error: Exception)→ None
Called for encountered errors. Defaults to raising an exception.

The following visitors are readily available.

38 Chapter 8. Contents

python-chess, Release 0.31.1

class chess.pgn.GameBuilder(*, Game=<class 'chess.pgn.Game'>)
Creates a game model. Default visitor for read_game().

handle_error(error: Exception)→ None
Populates chess.pgn.Game.errors with encountered errors and logs them.

You can silence the log and handle errors yourself after parsing:

>>> import chess.pgn
>>> import logging
>>>
>>> logging.getLogger("chess.pgn").setLevel(logging.CRITICAL)
>>>
>>> pgn = open("data/pgn/kasparov-deep-blue-1997.pgn")
>>>
>>> game = chess.pgn.read_game(pgn)
>>> game.errors # List of exceptions
[]

You can also override this method to hook into error handling:

>>> import chess.pgn
>>>
>>> class MyGameBuilder(chess.pgn.GameBuilder):
>>> def handle_error(self, error):
>>> pass # Ignore error
>>>
>>> pgn = open("data/pgn/kasparov-deep-blue-1997.pgn")
>>>
>>> game = chess.pgn.read_game(pgn, Visitor=MyGameBuilder)

result()→ GameT
Returns the visited Game().

class chess.pgn.HeadersBuilder(*, Headers=<class 'chess.pgn.Headers'>)
Collects headers into a dictionary.

class chess.pgn.BoardBuilder
Returns the final position of the game. The mainline of the game is on the move stack.

class chess.pgn.SkipVisitor
Skips a game.

class chess.pgn.StringExporter(*, columns: Optional[int] = 80, headers: bool = True, com-
ments: bool = True, variations: bool = True)

Allows exporting a game as a string.

>>> import chess.pgn
>>>
>>> game = chess.pgn.Game()
>>>
>>> exporter = chess.pgn.StringExporter(headers=True, variations=True,
→˓comments=True)
>>> pgn_string = game.accept(exporter)

Only columns characters are written per line. If columns is None, then the entire movetext will be on a single
line. This does not affect header tags and comments.

There will be no newline characters at the end of the string.

8.2. PGN parsing and writing 39

python-chess, Release 0.31.1

class chess.pgn.FileExporter(handle: TextIO, *, columns: Optional[int] = 80, headers: bool =
True, comments: bool = True, variations: bool = True)

Acts like a StringExporter, but games are written directly into a text file.

There will always be a blank line after each game. Handling encodings is up to the caller.

>>> import chess.pgn
>>>
>>> game = chess.pgn.Game()
>>>
>>> new_pgn = open("/dev/null", "w", encoding="utf-8")
>>> exporter = chess.pgn.FileExporter(new_pgn)
>>> game.accept(exporter)

8.2.5 NAGs

Numeric anotation glyphs describe moves and positions using standardized codes that are understood by many chess
programs. During PGN parsing, annotations like !, ?, !!, etc., are also converted to NAGs.

chess.pgn.NAG_GOOD_MOVE = 1
A good move. Can also be indicated by ! in PGN notation.

chess.pgn.NAG_MISTAKE = 2
A mistake. Can also be indicated by ? in PGN notation.

chess.pgn.NAG_BRILLIANT_MOVE = 3
A brilliant move. Can also be indicated by !! in PGN notation.

chess.pgn.NAG_BLUNDER = 4
A blunder. Can also be indicated by ?? in PGN notation.

chess.pgn.NAG_SPECULATIVE_MOVE = 5
A speculative move. Can also be indicated by !? in PGN notation.

chess.pgn.NAG_DUBIOUS_MOVE = 6
A dubious move. Can also be indicated by ?! in PGN notation.

8.2.6 Skimming

These functions allow for quickly skimming games without fully parsing them.

chess.pgn.read_headers(handle: TextIO)→ Optional[Headers]
Reads game headers from a PGN file opened in text mode.

Since actually parsing many games from a big file is relatively expensive, this is a better way to look only for
specific games and then seek and parse them later.

This example scans for the first game with Kasparov as the white player.

>>> import chess.pgn
>>>
>>> pgn = open("data/pgn/kasparov-deep-blue-1997.pgn")
>>>
>>> kasparov_offsets = []
>>>
>>> while True:
... offset = pgn.tell()
...

(continues on next page)

40 Chapter 8. Contents

python-chess, Release 0.31.1

(continued from previous page)

... headers = chess.pgn.read_headers(pgn)

... if headers is None:

... break

...

... if "Kasparov" in headers.get("White", "?"):

... kasparov_offsets.append(offset)

Then it can later be seeked and parsed.

>>> for offset in kasparov_offsets:
... pgn.seek(offset)
... chess.pgn.read_game(pgn)
0
<Game at ... ('Garry Kasparov' vs. 'Deep Blue (Computer)', 1997.??.??)>
1436
<Game at ... ('Garry Kasparov' vs. 'Deep Blue (Computer)', 1997.??.??)>
3067
<Game at ... ('Garry Kasparov' vs. 'Deep Blue (Computer)', 1997.??.??)>

chess.pgn.skip_game(handle: TextIO)→ bool
Skips a game. Returns True if a game was found and skipped.

8.3 Polyglot opening book reading

chess.polyglot.open_reader(path: PathLike)→ MemoryMappedReader
Creates a reader for the file at the given path.

The following example opens a book to find all entries for the start position:

>>> import chess
>>> import chess.polyglot
>>>
>>> board = chess.Board()
>>>
>>> with chess.polyglot.open_reader("data/polyglot/performance.bin") as reader:
... for entry in reader.find_all(board):
... print(entry.move, entry.weight, entry.learn)
e2e4 1 0
d2d4 1 0
c2c4 1 0

class chess.polyglot.Entry
An entry from a Polyglot opening book.

key: int
The Zobrist hash of the position.

raw_move: int
The raw binary representation of the move. Use move instead.

weight: int
An integer value that can be used as the weight for this entry.

learn: int
Another integer value that can be used for extra information.

8.3. Polyglot opening book reading 41

python-chess, Release 0.31.1

move: chess.Move
The Move.

class chess.polyglot.MemoryMappedReader(filename: PathLike)
Maps a Polyglot opening book to memory.

find_all(board: Union[chess.Board, int], *, minimum_weight: int = 1, exclude_moves: Con-
tainer[chess.Move] =)→ Iterator[Entry]

Seeks a specific position and yields corresponding entries.

find(board: Union[chess.Board, int], *, minimum_weight: int = 1, exclude_moves: Con-
tainer[chess.Move] =)→ Entry

Finds the main entry for the given position or Zobrist hash.

The main entry is the (first) entry with the highest weight.

By default, entries with weight 0 are excluded. This is a common way to delete entries from an opening
book without compacting it. Pass minimum_weight 0 to select all entries.

Raises IndexError if no entries are found. Use get() if you prefer to get None instead of
an exception.

choice(board: Union[chess.Board, int], *, minimum_weight: int = 1, ex-
clude_moves: Container[chess.Move] = (), random=<module 'ran-
dom' from '/home/docs/checkouts/readthedocs.org/user_builds/python-
chess/envs/v0.31.1/lib/python3.8/random.py'>)→ Entry

Uniformly selects a random entry for the given position.

Raises IndexError if no entries are found.

weighted_choice(board: Union[chess.Board, int], *, exclude_moves: Con-
tainer[chess.Move] = (), random=<module 'random' from
'/home/docs/checkouts/readthedocs.org/user_builds/python-
chess/envs/v0.31.1/lib/python3.8/random.py'>)→ Entry

Selects a random entry for the given position, distributed by the weights of the entries.

Raises IndexError if no entries are found.

close()→ None
Closes the reader.

chess.polyglot.POLYGLOT_RANDOM_ARRAY = [0x9D39247E33776D41, ..., 0xF8D626AAAF278509]
Array of 781 polyglot compatible pseudo random values for Zobrist hashing.

chess.polyglot.zobrist_hash(board: chess.Board, *, _hasher: Callable[[chess.Board], int] =
<chess.polyglot.ZobristHasher object>)→ int

Calculates the Polyglot Zobrist hash of the position.

A Zobrist hash is an XOR of pseudo-random values picked from an array. Which values are picked is decided
by features of the position, such as piece positions, castling rights and en passant squares.

8.4 Gaviota endgame tablebase probing

Gaviota tablebases provide WDL (win/draw/loss) and DTM (depth to mate) information for all endgame positions
with up to 5 pieces. Positions with castling rights are not included.

Warning: Ensure tablebase files match the known checksums. Maliciously crafted tablebase files may cause
denial of service with PythonTablebase and memory unsafety with NativeTablebase.

42 Chapter 8. Contents

python-chess, Release 0.31.1

chess.gaviota.open_tablebase(directory: str, *, libgtb=None, Library-
Loader=<ctypes.LibraryLoader object>) →
Union[NativeTablebase, PythonTablebase]

Opens a collection of tables for probing.

First native access via the shared library libgtb is tried. You can optionally provide a specific library name or a
library loader. The shared library has global state and caches, so only one instance can be open at a time.

Second, pure Python probing code is tried.

class chess.gaviota.PythonTablebase
Provides access to Gaviota tablebases using pure Python code.

add_directory(directory: str)→ None
Adds .gtb.cp4 tables from a directory. The relevant files are lazily opened when the tablebase is actually
probed.

probe_dtm(board: chess.Board)→ int
Probes for depth to mate information.

The absolute value is the number of half-moves until forced mate (or 0 in drawn positions). The value is
positive if the side to move is winning, otherwise it is negative.

In the example position, white to move will get mated in 10 half-moves:

>>> import chess
>>> import chess.gaviota
>>>
>>> with chess.gaviota.open_tablebase("data/gaviota") as tablebase:
... board = chess.Board("8/8/8/8/8/8/8/K2kr3 w - - 0 1")
... print(tablebase.probe_dtm(board))
...
-10

Raises KeyError (or specifically chess.gaviota.MissingTableError) if the probe
fails. Use get_dtm() if you prefer to get None instead of an exception.

Note that probing a corrupted table file is undefined behavior.

probe_wdl(board: chess.Board)→ int
Probes for win/draw/loss information.

Returns 1 if the side to move is winning, 0 if it is a draw, and -1 if the side to move is losing.

>>> import chess
>>> import chess.gaviota
>>>
>>> with chess.gaviota.open_tablebase("data/gaviota") as tablebase:
... board = chess.Board("8/4k3/8/B7/8/8/8/4K3 w - - 0 1")
... print(tablebase.probe_wdl(board))
...
0

Raises KeyError (or specifically chess.gaviota.MissingTableError) if the probe
fails. Use get_wdl() if you prefer to get None instead of an exception.

Note that probing a corrupted table file is undefined behavior.

close()→ None
Closes all loaded tables.

8.4. Gaviota endgame tablebase probing 43

python-chess, Release 0.31.1

8.4.1 libgtb

For faster access you can build and install a shared library. Otherwise the pure Python probing code is used.

git clone https://github.com/michiguel/Gaviota-Tablebases.git
cd Gaviota-Tablebases
make
sudo make install

chess.gaviota.open_tablebase_native(directory: str, *, libgtb=None, Library-
Loader=<ctypes.LibraryLoader object>) → Na-
tiveTablebase

Opens a collection of tables for probing using libgtb.

In most cases open_tablebase() should be used. Use this function only if you do not want to downgrade
to pure Python tablebase probing.

Raises RuntimeError or OSError when libgtb can not be used.

class chess.gaviota.NativeTablebase(libgtb)
Provides access to Gaviota tablebases via the shared library libgtb. Has the same interface as
PythonTablebase.

8.5 Syzygy endgame tablebase probing

Syzygy tablebases provide WDL (win/draw/loss) and DTZ (distance to zero) information for all endgame positions
with up to 6 (and experimentally 7) pieces. Positions with castling rights are not included.

Warning: Ensure tablebase files match the known checksums. Maliciously crafted tablebase files may cause
denial of service.

chess.syzygy.open_tablebase(directory: str, *, load_wdl: bool = True, load_dtz: bool = True,
max_fds: Optional[int] = 128, VariantBoard: Type[chess.Board] =
<class 'chess.Board'>)→ Tablebase

Opens a collection of tables for probing. See Tablebase.

Note: Generally probing requires tablebase files for the specific material composition, as well as tablebase files
with less pieces. This is important because 6-piece and 5-piece files are often distributed seperately, but are both
required for 6-piece positions. Use add_directory() to load tables from additional directories.

class chess.syzygy.Tablebase(*, max_fds: Optional[int] = 128, VariantBoard: Type[chess.Board]
= <class 'chess.Board'>)

Manages a collection of tablebase files for probing.

If max_fds is not None, will at most use max_fds open file descriptors at any given time. The least recently used
tables are closed, if nescessary.

add_directory(directory: str, *, load_wdl: bool = True, load_dtz: bool = True)→ int
Adds tables from a directory.

By default all available tables with the correct file names (e.g. WDL files like KQvKN.rtbw and DTZ
files like KRBvK.rtbz) are added.

The relevant files are lazily opened when the tablebase is actually probed.

44 Chapter 8. Contents

https://github.com/michiguel/Gaviota-Tablebases

python-chess, Release 0.31.1

Returns the number of table files that were found.

probe_wdl(board: chess.Board)→ int
Probes WDL tables for win/draw/loss-information.

Probing is thread-safe when done with different board objects and if board objects are not modified during
probing.

Returns 2 if the side to move is winning, 0 if the position is a draw and -2 if the side to move is losing.

Returns 1 in case of a cursed win and -1 in case of a blessed loss. Mate can be forced but the position can
be drawn due to the fifty-move rule.

>>> import chess
>>> import chess.syzygy
>>>
>>> with chess.syzygy.open_tablebase("data/syzygy/regular") as tablebase:
... board = chess.Board("8/2K5/4B3/3N4/8/8/4k3/8 b - - 0 1")
... print(tablebase.probe_wdl(board))
...
-2

Raises KeyError (or specifically chess.syzygy.MissingTableError) if the position
could not be found in the tablebase. Use get_wdl() if you prefer to get None instead of
an exception.

Note that probing corrupted table files is undefined behavior.

probe_dtz(board: chess.Board)→ int
Probes DTZ tables for distance to zero information.

Both DTZ and WDL tables are required in order to probe for DTZ.

Returns a positive value if the side to move is winning, 0 if the position is a draw and a negative value if
the side to move is losing. More precisely:

WDL DTZ
-2 -100 <=

n <= -1
Unconditional loss (assuming 50-move counter is zero), where a zeroing move can
be forced in -n plies.

-1 n < -100 Loss, but draw under the 50-move rule. A zeroing move can be forced in -n plies or
-n - 100 plies (if a later phase is responsible for the blessed loss).

0 0 Draw.
1 100 < n Win, but draw under the 50-move rule. A zeroing move can be forced in n plies or n

- 100 plies (if a later phase is responsible for the cursed win).
2 1 <= n

<= 100
Unconditional win (assuming 50-move counter is zero), where a zeroing move can
be forced in n plies.

The return value can be off by one: a return value -n can mean a losing zeroing move in in n + 1 plies and
a return value +n can mean a winning zeroing move in n + 1 plies. This is guaranteed not to happen for
positions exactly on the edge of the 50-move rule, so that (with some care) this never impacts the result of
practical play.

Minmaxing the DTZ values guarantees winning a won position (and drawing a drawn position), because it
makes progress keeping the win in hand. However the lines are not always the most straightforward ways
to win. Engines like Stockfish calculate themselves, checking with DTZ, but only play according to DTZ
if they can not manage on their own.

8.5. Syzygy endgame tablebase probing 45

python-chess, Release 0.31.1

>>> import chess
>>> import chess.syzygy
>>>
>>> with chess.syzygy.open_tablebase("data/syzygy/regular") as tablebase:
... board = chess.Board("8/2K5/4B3/3N4/8/8/4k3/8 b - - 0 1")
... print(tablebase.probe_dtz(board))
...
-53

Probing is thread-safe when done with different board objects and if board objects are not modified during
probing.

Raises KeyError (or specifically chess.syzygy.MissingTableError) if the position
could not be found in the tablebase. Use get_dtz() if you prefer to get None instead of
an exception.

Note that probing corrupted table files is undefined behavior.

close()→ None
Closes all loaded tables.

8.6 UCI/XBoard engine communication

UCI and XBoard are protocols for communicating with chess engines. This module implements an abstraction for
playing moves and analysing positions with both kinds of engines.

Warning: Many popular chess engines make no guarantees, not even memory safety, when parameters and
positions are not completely valid. This module tries to deal with benign misbehaving engines, but ultimately
they are executables running on your system.

The preferred way to use the API is with an asyncio event loop (examples show usage with Python 3.7 or later).
The examples also show a synchronous wrapper SimpleEngine that automatically spawns an event loop in the
background.

8.6.1 Playing

Example: Let Stockfish play against itself, 100 milliseconds per move.

import chess
import chess.engine

engine = chess.engine.SimpleEngine.popen_uci("/usr/bin/stockfish")

board = chess.Board()
while not board.is_game_over():

result = engine.play(board, chess.engine.Limit(time=0.1))
board.push(result.move)

engine.quit()

46 Chapter 8. Contents

https://docs.python.org/3/library/asyncio.html

python-chess, Release 0.31.1

import asyncio
import chess
import chess.engine

async def main():
transport, engine = await chess.engine.popen_uci("/usr/bin/stockfish")

board = chess.Board()
while not board.is_game_over():

result = await engine.play(board, chess.engine.Limit(time=0.1))
board.push(result.move)

await engine.quit()

asyncio.set_event_loop_policy(chess.engine.EventLoopPolicy())
asyncio.run(main())

class chess.engine.EngineProtocol
Protocol for communicating with a chess engine process.

abstract async play(board: chess.Board, limit: Limit, *, game: object = None, info:
Info = <Info.NONE: 0>, ponder: bool = False, root_moves: Op-
tional[Iterable[chess.Move]] = None, options: ConfigMapping = {}) →
PlayResult

Plays a position.

Parameters

• board – The position. The entire move stack will be sent to the engine.

• limit – An instance of chess.engine.Limit that determines when to stop thinking.

• game – Optional. An arbitrary object that identifies the game. Will automatically inform
the engine if the object is not equal to the previous game (e.g., ucinewgame, new).

• info – Selects which additional information to retrieve from the engine. INFO_NONE,
INFO_BASE (basic information that is trivial to obtain), INFO_SCORE, INFO_PV,
INFO_REFUTATION, INFO_CURRLINE, INFO_ALL or any bitwise combination.
Some overhead is associated with parsing extra information.

• ponder – Whether the engine should keep analysing in the background even after the
result has been returned.

• root_moves – Optional. Consider only root moves from this list.

• options – Optional. A dictionary of engine options for the analysis. The previous
configuration will be restored after the analysis is complete. You can permanently apply a
configuration with configure().

class chess.engine.Limit(*, time: Optional[float] = None, depth: Optional[int] = None, nodes:
Optional[int] = None, mate: Optional[int] = None, white_clock: Op-
tional[float] = None, black_clock: Optional[float] = None, white_inc:
Optional[float] = None, black_inc: Optional[float] = None, remain-
ing_moves: Optional[int] = None)

Search-termination condition.

time: Optional[float]
Search exactly time seconds.

depth: Optional[int]
Search depth ply only.

8.6. UCI/XBoard engine communication 47

python-chess, Release 0.31.1

nodes: Optional[int]
Search only a limited number of nodes.

mate: Optional[int]
Search for a mate in mate moves.

white_clock: Optional[float]
Time in seconds remaining for White.

black_clock: Optional[float]
Time in seconds remaining for Black.

white_inc: Optional[float]
Fisher increment for White, in seconds.

black_inc: Optional[float]
Fisher increment for Black, in seconds.

remaining_moves: Optional[int]
Number of moves to the next time control. If this is not set, but white_clock and black_clock are, then it is
sudden death.

class chess.engine.PlayResult(move: Optional[chess.Move], ponder: Optional[chess.Move],
info: Optional[InfoDict] = None, *, draw_offered: bool = False,
resigned: bool = False)

Returned by chess.engine.EngineProtocol.play().

move: Optional[chess.Move]
The best move accordig to the engine, or None.

ponder: Optional[chess.Move]
The response that the engine expects after move, or None.

info: chess.engine.InfoDict
A dictionary of extra information sent by the engine. Commonly used keys are: score (a PovScore),
pv (a list of Move objects), depth, seldepth, time (in seconds), nodes, nps, tbhits, multipv.

Others: currmove, currmovenumber, hashfull, cpuload, refutation, currline, ebf,
wdl, and string.

draw_offered: bool
Whether the engine offered a draw before moving.

resigned: bool
Whether the engine resigned.

8.6.2 Analysing and evaluating a position

Example:

import chess
import chess.engine

engine = chess.engine.SimpleEngine.popen_uci("/usr/bin/stockfish")

board = chess.Board()
info = engine.analyse(board, chess.engine.Limit(time=0.1))
print("Score:", info["score"])
Score: +20

(continues on next page)

48 Chapter 8. Contents

python-chess, Release 0.31.1

(continued from previous page)

board = chess.Board("r1bqkbnr/p1pp1ppp/1pn5/4p3/2B1P3/5Q2/PPPP1PPP/RNB1K1NR w KQkq -
→˓2 4")
info = engine.analyse(board, chess.engine.Limit(depth=20))
print("Score:", info["score"])
Score: #+1

engine.quit()

import asyncio
import chess
import chess.engine

async def main():
transport, engine = await chess.engine.popen_uci("/usr/bin/stockfish")

board = chess.Board()
info = await engine.analyse(board, chess.engine.Limit(time=0.1))
print(info["score"])
Score: +20

board = chess.Board("r1bqkbnr/p1pp1ppp/1pn5/4p3/2B1P3/5Q2/PPPP1PPP/RNB1K1NR w
→˓KQkq - 2 4")

info = await engine.analyse(board, chess.engine.Limit(depth=20))
print(info["score"])
Score: #+1

await engine.quit()

asyncio.set_event_loop_policy(chess.engine.EventLoopPolicy())
asyncio.run(main())

class chess.engine.EngineProtocol
Protocol for communicating with a chess engine process.

async analyse(board: chess.Board, limit: Limit, *, multipv: Optional[int] = None, game: object =
None, info: Info = <Info.ALL: 31>, root_moves: Optional[Iterable[chess.Move]] =
None, options: ConfigMapping = {})→ Union[List[InfoDict], InfoDict]

Analyses a position and returns a dictionary of information.

Parameters

• board – The position to analyse. The entire move stack will be sent to the engine.

• limit – An instance of chess.engine.Limit that determines when to stop the anal-
ysis.

• multipv – Optional. Analyse multiple root moves. Will return a list of at most multipv
dictionaries rather than just a single info dictionary.

• game – Optional. An arbitrary object that identifies the game. Will automatically inform
the engine if the object is not equal to the previous game (e.g., ucinewgame, new).

• info – Selects which information to retrieve from the engine. INFO_NONE,
INFO_BASE (basic information that is trivial to obtain), INFO_SCORE, INFO_PV,
INFO_REFUTATION, INFO_CURRLINE, INFO_ALL or any bitwise combination.
Some overhead is associated with parsing extra information.

• root_moves – Optional. Limit analysis to a list of root moves.

8.6. UCI/XBoard engine communication 49

python-chess, Release 0.31.1

• options – Optional. A dictionary of engine options for the analysis. The previous
configuration will be restored after the analysis is complete. You can permanently apply a
configuration with configure().

class chess.engine.PovScore(relative: ‘Score’, turn: chess.Color)
A relative Score and the point of view.

relative: chess.engine.Score
The relative Score.

turn: chess.Color
The point of view (chess.WHITE or chess.BLACK).

white()→ ’Score’
Gets the score from White’s point of view.

black()→ ’Score’
Gets the score from Black’s point of view.

pov(color: chess.Color)→ ’Score’
Gets the score from the point of view of the given color.

is_mate()→ bool
Tests if this is a mate score.

class chess.engine.Score
Evaluation of a position.

The score can be Cp (centi-pawns), Mate or MateGiven. A positive value indicates an advantage.

There is a total order defined on centi-pawn and mate scores.

>>> from chess.engine import Cp, Mate, MateGiven
>>>
>>> Mate(-0) < Mate(-1) < Cp(-50) < Cp(200) < Mate(4) < Mate(1) < MateGiven
True

Scores can be negated to change the point of view:

>>> -Cp(20)
Cp(-20)

>>> -Mate(-4)
Mate(+4)

>>> -Mate(0)
MateGiven

abstract score(*, mate_score: Optional[int] = None)→ Optional[int]
Returns the centi-pawn score as an integer or None.

You can optionally pass a large value to convert mate scores to centi-pawn scores.

>>> Cp(-300).score()
-300
>>> Mate(5).score() is None
True
>>> Mate(5).score(mate_score=100000)
99995

50 Chapter 8. Contents

python-chess, Release 0.31.1

abstract mate()→ Optional[int]
Returns the number of plies to mate, negative if we are getting mated, or None.

Warning: This conflates Mate(0) (we lost) and MateGiven (we won) to 0.

is_mate()→ bool
Tests if this is a mate score.

8.6.3 Indefinite or infinite analysis

Example: Stream information from the engine and stop on an arbitrary condition.

import chess
import chess.engine

engine = chess.engine.SimpleEngine.popen_uci("/usr/bin/stockfish")

with engine.analysis(chess.Board()) as analysis:
for info in analysis:

print(info.get("score"), info.get("pv"))

Arbitrary stop condition.
if info.get("seldepth", 0) > 20:

break

engine.quit()

import asyncio
import chess
import chess.engine

async def main():
transport, engine = await chess.engine.popen_uci("/usr/bin/stockfish")

with await engine.analysis(chess.Board()) as analysis:
async for info in analysis:

print(info.get("score"), info.get("pv"))

Arbitrary stop condition.
if info.get("seldepth", 0) > 20:

break

await engine.quit()

asyncio.set_event_loop_policy(chess.engine.EventLoopPolicy())
asyncio.run(main())

class chess.engine.EngineProtocol
Protocol for communicating with a chess engine process.

abstract async analysis(board: chess.Board, limit: Optional[Limit] = None, *, multipv: Op-
tional[int] = None, game: object = None, info: Info = <Info.ALL:
31>, root_moves: Optional[Iterable[chess.Move]] = None, options:
ConfigMapping = {})→ ’AnalysisResult’

Starts analysing a position.

8.6. UCI/XBoard engine communication 51

python-chess, Release 0.31.1

Parameters

• board – The position to analyse. The entire move stack will be sent to the engine.

• limit – Optional. An instance of chess.engine.Limit that determines when to
stop the analysis. Analysis is infinite by default.

• multipv – Optional. Analyse multiple root moves.

• game – Optional. An arbitrary object that identifies the game. Will automatically inform
the engine if the object is not equal to the previous game (e.g., ucinewgame, new).

• info – Selects which information to retrieve from the engine. INFO_NONE,
INFO_BASE (basic information that is trivial to obtain), INFO_SCORE, INFO_PV,
INFO_REFUTATION, INFO_CURRLINE, INFO_ALL or any bitwise combination.
Some overhead is associated with parsing extra information.

• root_moves – Optional. Limit analysis to a list of root moves.

• options – Optional. A dictionary of engine options for the analysis. The previous
configuration will be restored after the analysis is complete. You can permanently apply a
configuration with configure().

Returns AnalysisResult, a handle that allows asynchronously iterating over the information sent by
the engine and stopping the analysis at any time.

class chess.engine.AnalysisResult(stop: Optional[Callable[[], None]] = None)
Handle to ongoing engine analysis. Returned by chess.engine.EngineProtocol.analysis().

Can be used to asynchronously iterate over information sent by the engine.

Automatically stops the analysis when used as a context manager.

info: chess.engine.InfoDict
A dictionary of aggregated information sent by the engine. This is actually an alias for multipv[0].

multipv: List[chess.engine.InfoDict]
A list of dictionaries with aggregated information sent by the engine. One item for each root move.

stop()→ None
Stops the analysis as soon as possible.

async wait()→ BestMove
Waits until the analysis is complete (or stopped).

async get()→ InfoDict
Waits for the next dictionary of information from the engine and returns it.

It might be more convenient to use async for info in analysis:

Raises chess.engine.AnalysisComplete if the analysis is complete (or has been
stopped) and all information has been consumed. Use next() if you prefer to get None
instead of an exception.

empty()→ bool
Checks if all information has been consumed.

If the queue is empty, but the analysis is still ongoing, then further information can become available in
the future.

If the queue is not empty, then the next call to get() will return instantly.

class chess.engine.BestMove(move: Optional[chess.Move], ponder: Optional[chess.Move])
Returned by chess.engine.AnalysisResult.wait().

52 Chapter 8. Contents

python-chess, Release 0.31.1

move: Optional[chess.Move]
The best move according to the engine, or None.

ponder: Optional[chess.Move]
The response that the engine expects after move, or None.

8.6.4 Options

configure(), play(), analyse() and analysis() accept a dictionary of options.

>>> import chess.engine
>>>
>>> engine = chess.engine.SimpleEngine.popen_uci("/usr/bin/stockfish")
>>>
>>> # Check available options.
>>> engine.options["Hash"]
Option(name='Hash', type='spin', default=16, min=1, max=131072, var=[])
>>>
>>> # Set an option.
>>> engine.configure({"Hash": 32})
>>>
>>> # [...]

import asyncio
import chess.engine

async def main():
transport, protocol = await chess.engine.popen_uci("/usr/bin/stockfish")

Check available options.
print(engine.options["Hash"])
Option(name='Hash', type='spin', default=16, min=1, max=131072, var=[])

Set an option.
await engine.configure({"Hash": 32})

[...]

asyncio.set_event_loop_policy(chess.engine.EventLoopPolicy())
asyncio.run(main())

class chess.engine.EngineProtocol
Protocol for communicating with a chess engine process.

options: MutableMapping[str, chess.engine.Option]
Dictionary of available options.

abstract async configure(options: ConfigMapping)→ None
Configures global engine options.

Parameters options – A dictionary of engine options where the keys are names of
options. Do not set options that are managed automatically (chess.engine.
Option.is_managed()).

class chess.engine.Option
Information about an available engine option.

name: str
The name of the option.

8.6. UCI/XBoard engine communication 53

python-chess, Release 0.31.1

type
The type of the option.

type UCI CECP value
check X X True or False
button X X None
reset X None
save X None
string X X string without line breaks
file X string, interpreted as the path to a file
path X string, interpreted as the path to a directory

default: chess.engine.ConfigValue
The default value of the option.

min: Optional[int]
The minimum integer value of a spin option.

max: Optional[int]
The maximum integer value of a spin option.

var: Optional[List[str]]
A list of allowed string values for a combo option.

is_managed()→ bool
Some options are managed automatically: UCI_Chess960, UCI_Variant, MultiPV, Ponder.

8.6.5 Logging

Communication is logged with debug level on a logger named chess.engine. Debug logs are useful while trou-
bleshooting. Please also provide them when submitting bug reports.

import logging

Enable debug logging.
logging.basicConfig(level=logging.DEBUG)

8.6.6 AsyncSSH

EngineProtocol can also be used with AsyncSSH (since 1.16.0) to communicate with an engine on a remote
computer.

import asyncio
import asyncssh
import chess
import chess.engine

async def main():
async with asyncssh.connect("localhost") as conn:

channel, engine = await conn.create_subprocess(chess.engine.UciProtocol, "/
→˓usr/bin/stockfish")

await engine.initialize()

Play, analyse, ...

(continues on next page)

54 Chapter 8. Contents

https://asyncssh.readthedocs.io/en/latest/

python-chess, Release 0.31.1

(continued from previous page)

await engine.ping()

asyncio.run(main())

8.6.7 Reference

class chess.engine.EngineError
Runtime error caused by a misbehaving engine or incorrect usage.

class chess.engine.EngineTerminatedError
The engine process exited unexpectedly.

class chess.engine.AnalysisComplete
Raised when analysis is complete, all information has been consumed, but further information was requested.

async chess.engine.popen_uci(command: Union[str, List[str]], *, setpgrp: bool = False,
**popen_args: Any) → Tuple[asyncio.SubprocessTransport,
UciProtocol]

Spawns and initializes a UCI engine.

Parameters

• command – Path of the engine executable, or a list including the path and arguments.

• setpgrp – Open the engine process in a new process group. This will stop signals (such
as keyboard interrupts) from propagating from the parent process. Defaults to False.

• popen_args – Additional arguments for popen. Do not set stdin, stdout, bufsize
or universal_newlines.

Returns a subprocess transport and engine protocol pair.

async chess.engine.popen_xboard(command: Union[str, List[str]], *, setpgrp: bool = False,
**popen_args: Any) → Tuple[asyncio.SubprocessTransport,
XBoardProtocol]

Spawns and initializes an XBoard engine.

Parameters

• command – Path of the engine executable, or a list including the path and arguments.

• setpgrp – Open the engine process in a new process group. This will stop signals (such
as keyboard interrupts) from propagating from the parent process. Defaults to False.

• popen_args – Additional arguments for popen. Do not set stdin, stdout, bufsize
or universal_newlines.

Returns a subprocess transport and engine protocol pair.

class chess.engine.EngineProtocol
Protocol for communicating with a chess engine process.

returncode: asyncio.Future[int]
Future: Exit code of the process.

id: Dict[str, str]
Dictionary of information about the engine. Common keys are name and author.

abstract async initialize()→ None
Initializes the engine.

8.6. UCI/XBoard engine communication 55

https://docs.python.org/3/library/subprocess.html#popen-constructor
https://docs.python.org/3/library/subprocess.html#popen-constructor

python-chess, Release 0.31.1

abstract async ping()→ None
Pings the engine and waits for a response. Used to ensure the engine is still alive and idle.

abstract async quit()→ None
Asks the engine to shut down.

class chess.engine.UciProtocol
An implementation of the Universal Chess Interface protocol.

class chess.engine.XBoardProtocol
An implementation of the XBoard protocol (CECP).

class chess.engine.SimpleEngine(transport: asyncio.SubprocessTransport, protocol: EnginePro-
tocol, *, timeout: Optional[float] = 10.0)

Synchronous wrapper around a transport and engine protocol pair. Provides the same methods and attributes as
EngineProtocol with blocking functions instead of coroutines.

You may not concurrently modify objects passed to any of the methods. Other than that, SimpleEngine is
thread-safe. When sending a new command to the engine, any previous running command will be cancelled as
soon as possible.

Methods will raise asyncio.TimeoutError if an operation takes timeout seconds longer than expected
(unless timeout is None).

Automatically closes the transport when used as a context manager.

close()→ None
Closes the transport and the background event loop as soon as possible.

classmethod popen_uci(command: Union[str, List[str]], *, timeout: Optional[float] = 10.0, de-
bug: bool = False, setpgrp: bool = False, **popen_args: Any)→ ’Sim-
pleEngine’

Spawns and initializes a UCI engine. Returns a SimpleEngine instance.

classmethod popen_xboard(command: Union[str, List[str]], *, timeout: Optional[float] = 10.0,
debug: bool = False, setpgrp: bool = False, **popen_args: Any)
→ ’SimpleEngine’

Spawns and initializes an XBoard engine. Returns a SimpleEngine instance.

class chess.engine.SimpleAnalysisResult(simple_engine: SimpleEngine, inner: AnalysisRe-
sult)

Synchronous wrapper around AnalysisResult. Returned by chess.engine.SimpleEngine.
analysis().

chess.engine.EventLoopPolicy()→ None
An event loop policy for thread-local event loops and child watchers. Ensures each event loop is capable of
spawning and watching subprocesses, even when not running on the main thread.

Windows: Uses ProactorEventLoop.

Unix: Uses SelectorEventLoop. If available, PidfdChildWatcher is used to detect subprocess ter-
mination (Python 3.9+ on Linux 5.3+). Otherwise the default child watcher is used on the main thread and
relatively slow eager polling is used on all other threads.

56 Chapter 8. Contents

https://www.chessprogramming.org/UCI
http://hgm.nubati.net/CECP.html

python-chess, Release 0.31.1

8.7 SVG rendering

The chess.svg module renders SVG Tiny images (mostly for IPython/Jupyter Notebook integration). The piece
images by Colin M.L. Burnett are triple licensed under the GFDL, BSD and GPL.

chess.svg.piece(piece: chess.Piece, size: Optional[int] = None)→ str
Renders the given chess.Piece as an SVG image.

>>> import chess
>>> import chess.svg
>>>
>>> chess.svg.piece(chess.Piece.from_symbol("R"))

chess.svg.board(board: Optional[chess.BaseBoard] = None, *, squares: Optional[chess.IntoSquareSet]
= None, flipped: bool = False, coordinates: bool = True, lastmove: Op-
tional[chess.Move] = None, check: Optional[chess.Square] = None, arrows: Iter-
able[Union[Arrow, Tuple[chess.Square, chess.Square]]] = , size: Optional[int] =
None, style: Optional[str] = None)→ str

Renders a board with pieces and/or selected squares as an SVG image.

Parameters

• board – A chess.BaseBoard for a chessboard with pieces or None (the default) for a
chessboard without pieces.

• squares – A chess.SquareSet with selected squares.

• flipped – Pass True to flip the board.

• coordinates – Pass False to disable the coordinate margin.

• lastmove – A chess.Move to be highlighted.

• check – A square to be marked as check.

• arrows – A list of Arrow objects like [chess.svg.Arrow(chess.E2, chess.
E4)] or a list of tuples like [(chess.E2, chess.E4)]. An arrow from a square
pointing to the same square is drawn as a circle, like [(chess.E2, chess.E2)].

• size – The size of the image in pixels (e.g., 400 for a 400 by 400 board) or None (the
default) for no size limit.

• style – A CSS stylesheet to include in the SVG image.

>>> import chess
>>> import chess.svg
>>>
>>> board = chess.Board("8/8/8/8/4N3/8/8/8 w - - 0 1")
>>> squares = board.attacks(chess.E4)
>>> chess.svg.board(board=board, squares=squares)

class chess.svg.Arrow(tail: chess.Square, head: chess.Square, *, color: str = '#888')
Details of an arrow to be drawn.

tail: chess.Square
Start square of the arrow.

8.7. SVG rendering 57

https://en.wikipedia.org/wiki/User:Cburnett

python-chess, Release 0.31.1

head: chess.Square
End square of the arrow.

color = '#888'
Arrow color.

8.8 Variants

python-chess supports several chess variants.

>>> import chess.variant
>>>
>>> board = chess.variant.GiveawayBoard()

>>> # General information about the variants
>>> type(board).uci_variant
'giveaway'
>>> type(board).xboard_variant
'giveaway'
>>> type(board).starting_fen
'rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w - - 0 1'

See chess.Board.is_variant_end(), is_variant_win() is_variant_draw()
is_variant_loss() for special variant end conditions and results.

Variant Board class UCI/XBoard Syzygy
Standard chess.Board chess/normal .rtbw, .rtbz
Suicide chess.variant.SuicideBoard suicide .stbw, .stbz
Giveaway chess.variant.GiveawayBoard giveaway .gtbw, .gtbz
Antichess chess.variant.AntichessBoard antichess .gtbw, .gtbz
Atomic chess.variant.AtomicBoard atomic .atbw, .atbz
King of the Hill chess.variant.KingOfTheHillBoard kingofthehill
Racing Kings chess.variant.RacingKingsBoard racingkings
Horde chess.variant.HordeBoard horde
Three-check chess.variant.ThreeCheckBoard 3check
Crazyhouse chess.variant.CrazyhouseBoard crazyhouse

chess.variant.find_variant(name: str)→ Type[chess.Board]
Looks for a variant board class by variant name.

8.8.1 Chess960

Chess960 is orthogonal to all other variants.

>>> chess.Board(chess960=True)
Board('rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1', chess960=True)

See chess.BaseBoard.set_chess960_pos(), chess960_pos(), and from_chess960_pos() for
dealing with Chess960 starting positions.

58 Chapter 8. Contents

python-chess, Release 0.31.1

8.8.2 Crazyhouse

class chess.variant.CrazyhousePocket(symbols: Iterable[str] = '')
A Crazyhouse pocket with a counter for each piece type.

add(piece_type: chess.PieceType)→ None
Adds a piece of the given type to this pocket.

remove(piece_type: chess.PieceType)→ None
Removes a piece of the given type from this pocket.

count(piece_type: chess.PieceType)→ int
Returns the number of pieces of the given type in the pocket.

reset()→ None
Clears the pocket.

copy()→ CrazyhousePocketT
Returns a copy of this pocket.

class chess.variant.CrazyhouseBoard(fen: Optional[str] = 'rn-
bqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR[] w
KQkq - 0 1', chess960: bool = False)

pockets = [chess.variant.CrazyhousePocket(), chess.variant.CrazyhousePocket()]

8.8.3 Three-check

class chess.variant.ThreeCheckBoard(fen: Optional[str] = 'rn-
bqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR
w KQkq - 3+3 0 1', chess960: bool = False)

remaining_checks = [3, 3]

8.8.4 UCI/XBoard

Multi-Variant Stockfish and other engines have an UCI_Variant option. XBoard engines may declare support for
variants. This is automatically managed.

>>> import chess.engine
>>>
>>> engine = chess.engine.SimpleEngine.popen_uci("stockfish-mv")
>>>
>>> board = chess.variant.RacingKingsBoard()
>>> result = engine.play(board, chess.engine.Limit(time=1.0))

8.8. Variants 59

https://github.com/ddugovic/Stockfish

python-chess, Release 0.31.1

8.8.5 Syzygy

Syzygy tablebases are available for suicide, giveaway and atomic chess.

>>> import chess.syzygy
>>> import chess.variant
>>>
>>> tables = chess.syzygy.open_tablebase("data/syzygy", VariantBoard=chess.variant.
→˓AtomicBoard)

8.9 Changelog for python-chess

8.9.1 New in v0.31.1

Bugfixes:

• RacingKingsBoard.is_variant_win() no longer incorrectly returns True for drawn positions.

• Multiple moves for EPD opcodes am and bm are now sorted as required by the specification.

• Coordinates of SVG boards are now properly aligned, even when rendered as SVG Tiny.

Changes:

• SVG boards now have a background color for the coordinate margin, making coordinates readable on dark
backgrounds.

• Added [Variant “Illegal”] as an alias for standard chess (used by Chessbase).

Features:

• Added Board.find_move(), useful for finding moves that match human input.

8.9.2 New in v0.31.0

Changes:

• Replaced lookup table chess.BB_BETWEEN[a][b] with a function chess.between(a, b). Improves initialization
and runtime performance.

• chess.pgn.BaseVisitor.result() is now an abstract method, forcing subclasses to implement it.

• Removed helper attributes from chess.engine.InfoDict. Instead it is now a TypedDict.

• chess.engine.PovScore equality is now semantic instead of structural: Scores compare equal to the negative
score from the opposite point of view.

Bugfixes:

• chess.Board.is_irreversible() now considers ceding legal en passant captures as irreversible. Also documented
that false-negatives due to forced lines are by design.

• Fixed stack overflow in chess.pgn when exporting, visiting or getting the final board of a very long game.

• Clarified documentation regarding board validity.

• chess.pgn.GameNode.__repr__() no longer errors if the root node has invalid FEN or Variant headers.

• Carriage returns are no longer allowed in PGN header values, fixing reparsability.

• Fixed type error when XBoard name or egt features have a value that looks like an integer.

60 Chapter 8. Contents

python-chess, Release 0.31.1

• chess.engine is now passing type checks with mypy.

• chess.gaviota is now passing type checks with mypy.

Features:

• Added chess.Board.gives_check().

• chess.engine.AnalysisResult.wait() now returns chess.engine.BestMove.

• Added empty_square parameter for chess.Board.unicode() with better aligned default ().

8.9.3 New in v0.30.1

Changes:

• Positions with more than two checkers are considered invalid and board.status() returns
chess.STATUS_TOO_MANY_CHECKERS.

• Pawns drops in Crazyhouse are considered zeroing and reset board.halfmove_clock when played.

• Now validating file sizes when opening Syzygy tables and Polyglot opening books.

• Explicitly warn about untrusted tablebase files and chess engines.

Bugfixes:

• Fix Racing Kings game end detection: Black cannot catch up if their own pieces block the goal. White would
win on the next turn, so this did not impact the game theoretical outcome of the game.

• Fix bugs discovered by fuzzing the EPD parser: Fixed serialization of empty strings, reparsability of empty
move lists, handling of non-finite floats, and handling of whitespace in opcodes.

Features:

• Added board.checkers(), returning a set of squares with the pieces giving check.

8.9.4 New in v0.30.0

Changes:

• Dropped support for Python 3.5.

• Remove explicit loop arguments in chess.engine module, following https://bugs.python.org/issue36373.

Bugfixes:

• chess.engine.EngineProtocol.returncode is no longer poisoned when EngineProtocol.quit() times out.

• chess.engine.PlayResult.info was not always of type chess.engine.InfoDict.

Features:

• The background thread spawned by chess.engine.SimpleEngine is now named for improved debuggability, re-
vealing the PID of the engine process.

• chess.engine.EventLoopPolicy now supports asyncio.PidfdChildWatcher when running on Python 3.9+ and
Linux 5.3+.

• Add chess.Board.san_and_push().

8.9. Changelog for python-chess 61

https://bugs.python.org/issue36373

python-chess, Release 0.31.1

8.9.5 New in v0.29.0

Changes:

• chess.variant.GiveawayBoard now starts with castling rights. chess.variant.AntichessBoard is the same vari-
ant without castling rights.

• UCI info parser no longer reports errors when encountering unknown tokens.

• Performance improvements for repetition detection.

• Since Python 3.8: chess.syzygy/chess.polyglot use madvise(MADV_RANDOM) to prepare table/book files for
random access.

Bugfixes:

• Fix syntax error in type annotation of chess.engine.run_in_background().

• Fix castling rights when king is exploded in Atomic. Mitigated by the fact that the game is over and that it did
not affect FEN.

• Fix insufficient material with underpromoted pieces in Crazyhouse. Mitigated by the fact that affected positions
are unreachable in Crazyhouse.

Features:

• Support wdl in UCI info (usually activated with UCI_ShowWDL).

8.9.6 New in v0.28.3

Bugfixes:

• Follow FICS rules in Atomic castling edge cases.

• Handle self-reported errors by XBoard engines “Error: . . . ” or “Illegal move: . . . ”.

8.9.7 New in v0.28.2

Bugfixes:

• Fixed exception propagation, when a UCI engine sends an invalid bestmove. Thanks @fsmosca.

Changes:

• chess.Move.from_uci() no longer accepts moves from and to the same square, for example a1a1. 0000 is now
the only valid null move notation.

8.9.8 New in v0.28.1

Bugfixes:

• The minimum Python version is 3.5.3 (instead of 3.5.0).

• Fix board.is_irreversible() when capturing a rook that had castling rights.

Changes:

• is_en_passant(), is_capture(), is_zeroing(), is_irreversible(), is_castling(), is_kingside_castling() and
is_queenside_castling() now consistently return False for null moves.

• Added chess.engine.InfoDict class with typed shorthands for common keys.

62 Chapter 8. Contents

python-chess, Release 0.31.1

• Support [Variant “3-check”] (from chess.com PGNs).

8.9.9 New in v0.28.0

Changes:

• Dropped support for Python 3.4 (end of life reached).

• chess.polyglot.Entry.move is now a property instead of a method. The raw move is now always decoded in
the context of the position (relevant for castling moves).

• Piece, Move, BaseBoard and Board comparisons no longer support duck typing.

• FENs sent to engines now always include potential en passant squares, even if no legal en passant capture exists.

• Circular SVG arrows now have a circle CSS class.

• Superfluous dashes (-) in EPDs are no longer treated as opcodes.

• Removed GameCreator, HeaderCreator and BoardCreator aliases for {Game,Headers,Board}Builder.

Bugfixes:

• Notation like Kh1 is no longer accepted for castling moves.

• Remove stale files from wheels published on PyPI.

• Parsing Three-Check EPDs with moves was always failing.

• Some methods in chess.variant were returning bool-ish integers, when they should have returned bool.

• chess.engine: Fix line decoding when Windows line-endings arrive seperately in stdout buffer.

• chess.engine: Survive timeout in analysis.

• chess.engine: Survive unexpected bestmove sent by misbehaving UCI engines.

New features:

• Experimental type signatures for almost all public APIs (typing). Some modules do not yet internally pass
typechecking.

• Added Board.color_at(square).

• Added chess.engine.AnalysisResult.get() and empty().

• chess.engine: The UCI_AnalyseMode option is still automatically managed, but can now be overwritten.

• chess.engine.EngineProtocol and constructors now optionally take an explicit loop argument.

8.9.10 New in v0.27.3

Changes:

• XBoardProtocol will no longer raise an exception when the engine resigned. Instead it sets a new flag PlayRe-
sult.resigned. resigned and draw_offered are keyword-only arguments.

• Renamed chess.pgn.{Game,Header,Board}Creator to {Game,Headers,Board}Builder. Aliases kept in place.

Bugfixes:

• Make XBoardProtocol robust against engines that send a move after claiming a draw or resigning. Thanks
@pascalgeo.

• XBoardProtocol no longer ignores Hint: sent by the engine.

8.9. Changelog for python-chess 63

python-chess, Release 0.31.1

• Fix handling of illegal moves in XBoardProtocol.

• Fix exception when engine is shut down while pondering.

• Fix unhandled internal exception and file descriptor leak when engine initialization fails.

• Fix HordeBoard.status() when black pieces are on the first rank. Thanks @Wisling.

New features:

• Added chess.pgn.Game.builder(), chess.pgn.Headers.builder() and chess.pgn.GameNode.dangling_node() to
simplify subclassing GameNode.

• EngineProtocol.communicate() is now also available in the synchronous API.

8.9.11 New in v0.27.2

Bugfixes:

• chess.engine.XBoardProtocol.play() was searching 100 times longer than intended when us-
ing chess.engine.Limit.time, and searching 100 times more nodes than intended when using
chess.engine.Limit.nodes. Thanks @pascalgeo.

8.9.12 New in v0.27.1

Bugfixes:

• chess.engine.XBoardProtocol.play() was raising KeyError when using time controls with increment or remain-
ing moves. Thanks @pascalgeo.

8.9.13 New in v0.27.0

This is the second release candidate for python-chess 1.0. If you see the need for breaking changes, please speak up
now!

Bugfixes:

• EngineProtocol.analyse(*, multipv) was not passing this argument to the engine and therefore only returned the
first principal variation. Thanks @svangordon.

• chess.svg.board(*, squares): The X symbol on selected squares is now more visible when it overlaps pieces.

Changes:

• FEN/EPD parsing is now more relaxed: Incomplete FENs and EPDs are completed with reasonable defaults
(w - - 0 1). The EPD parser accepts fields with moves in UCI notation (for example the technically invalid bm
g1f3 instead of bm Nf3).

• The PGN parser now skips games with invalid FEN headers and variations after an illegal move (after handling
the error as usual).

New features:

• Added Board.is_repetition(count=3).

• Document that chess.engine.EngineProtocol is compatible with AsyncSSH 1.16.0.

64 Chapter 8. Contents

python-chess, Release 0.31.1

8.9.14 New in v0.26.0

This is the first release candidate for python-chess 1.0. If you see the need for breaking changes, please speak up
now!

Changes:

• chess.engine is now stable and replaces chess.uci and chess.xboard.

• Advanced: EngineProtocol.initialize() is now public for use with custom transports.

• Removed __ne__ implementations (not required since Python 3).

• Assorted documentation and coding-style improvements.

New features:

• Check insufficient material for a specific side: board.has_insufficient_material(color).

• Copy boards with limited stack depth: board.copy(stack=depth).

Bugfixes:

• Properly handle delayed engine errors, for example unsupported options.

8.9.15 New in v0.25.1

Bugfixes:

• chess.engine did not correctly handle Windows-style line endings. Thanks @Bstylestuff.

8.9.16 New in v0.25.0

New features:

• This release introduces a new experimental API for chess engine communication, chess.engine, based on
asyncio. It is intended to eventually replace chess.uci and chess.xboard.

Bugfixes:

• Fixed race condition in LRU-cache of open Syzygy tables. The LRU-cache is enabled by default (max_fds).

• Fix deprecation warning and unclosed file in setup.py. Thanks Mickaël Schoentgen.

Changes:

• chess.pgn.read_game() now ignores BOM at the start of the stream.

• Removed deprecated items.

8.9.17 New in v0.24.2

Bugfixes:

• CrazyhouseBoard.root() and ThreeCheckBoard.root() were not returning the correct pockets and number of
remaining checks, respectively. Thanks @gbtami.

• chess.pgn.skip_game() now correctly skips PGN comments that contain line-breaks and PGN header tag nota-
tion.

Changes:

8.9. Changelog for python-chess 65

python-chess, Release 0.31.1

• Renamed chess.pgn.GameModelCreator to GameCreator. Alias kept in place and will be removed in a future
release.

• Renamed chess.engine to chess._engine. Use re-exports from chess.uci or chess.xboard.

• Renamed Board.stack to Board._stack. Do not use this directly.

• Improved memory usage: Board.legal_moves and Board.pseudo_legal_moves no longer create reference cycles.
PGN visitors can manage headers themselves.

• Removed previously deprecated items.

Features:

• Added chess.pgn.BaseVisitor.visit_board() and chess.pgn.BoardCreator.

8.9.18 New in v0.24.1, v0.23.11

Bugfixes:

• Fix chess.Board.set_epd() and chess.Board.from_epd() with semicolon in string operand. Thanks @jdart1.

• chess.pgn.GameNode.uci() was always raising an exception. Also included in v0.24.0.

8.9.19 New in v0.24.0

This release drops support for Python 2. The 0.23.x branch will be maintained for one more month.

Changes:

• Require Python 3.4. Thanks @hugovk.

• No longer using extra pip features: pip install python-chess[engine,gaviota] is now pip install python-chess.

• Various keyword arguments can now be used as keyword arguments only.

• chess.pgn.GameNode.accept() now also visits the move leading to that node.

• chess.pgn.GameModelCreator now requires that begin_game() be called.

• chess.pgn.scan_headers() and chess.pgn.scan_offsets() have been removed. Instead the new functions
chess.pgn.read_headers() and chess.pgn.skip_game() can be used for a similar purpose.

• chess.syzygy: Invalid magic headers now raise IOError. Previously they were only checked in an assertion.
type(board).{tbw_magic,tbz_magic,pawnless_tbw_magic,pawnless_tbz_magic} are now byte literals.

• board.status() constants (STATUS_) are now typed using enum.IntFlag. Values remain unchanged.

• chess.svg.Arrow is no longer a namedtuple.

• chess.PIECE_SYMBOLS[0] and chess.PIECE_NAMES[0] are now None instead of empty strings.

• Performance optimizations:

– chess.pgn.Game.from_board(),

– chess.square_name()

– Replace collections.deque with lists almost everywhere.

• Renamed symbols (aliases will be removed in the next release):

– chess.BB_VOID -> BB_EMPTY

– chess.bswap() -> flip_vertical()

66 Chapter 8. Contents

python-chess, Release 0.31.1

– chess.pgn.GameNode.main_line() -> mainline_moves()

– chess.pgn.GameNode.is_main_line() -> is_mainline()

– chess.variant.BB_HILL -> chess.BB_CENTER

– chess.syzygy.open_tablebases() -> open_tablebase()

– chess.syzygy.Tablebases -> Tablebase

– chess.syzygy.Tablebase.open_directory() -> add_directory()

– chess.gaviota.open_tablebases() -> open_tablebase()

– chess.gaviota.open_tablebases_native() -> open_tablebase_native()

– chess.gaviota.NativeTablebases -> NativeTablebase

– chess.gaviota.PythonTablebases -> PythonTablebase

– chess.gaviota.NativeTablebase.open_directory() -> add_directory()

– chess.gaviota.PythonTablebase.open_directory() -> add_directory()

Bugfixes:

• The PGN parser now gives the visitor a chance to handle unknown chess variants and continue parsing.

• chess.pgn.GameNode.uci() was always raising an exception.

New features:

• chess.SquareSet now extends collections.abc.MutableSet and can be initialized from iterables.

• board.apply_transform(f) and board.transform(f) can apply bitboard transformations to a position. Examples:
chess.flip_{vertical,horizontal,diagonal,anti_diagonal}.

• chess.pgn.GameNode.mainline() iterates over nodes of the mainline. Can also be used with reversed(). Reversal
is now also supported for chess.pgn.GameNode.mainline_moves().

• chess.svg.Arrow(tail, head, color=”#888”) gained an optional color argument.

• chess.pgn.BaseVisitor.parse_san(board, san) is used by parsers and can be overwritten to deal with non-standard
input formats.

• chess.pgn: Visitors can advise the parser to skip games or variations by returning the special value
chess.pgn.SKIP from begin_game(), end_headers() or begin_variation(). This is only a hint. The corresponding
end_game() or end_variation() will still be called.

• Added chess.svg.MARGIN.

8.9.20 New in v0.23.10

Bugfixes:

• chess.SquareSet now correctly handles negative masks. Thanks @hasnul.

• chess.pgn now accepts [Variant “chess 960”] (with the space).

8.9. Changelog for python-chess 67

python-chess, Release 0.31.1

8.9.21 New in v0.23.9

Changes:

• Updated Board.is_fivefold_repetition(). FIDE rules have changed and the repetition no longer needs to occur on
consecutive alternating moves. Thanks @LegionMammal978.

8.9.22 New in v0.23.8

Bugfixes:

• chess.syzygy: Correctly initialize wide DTZ map for experimental 7 piece table KRBBPvKQ.

8.9.23 New in v0.23.7

Bugfixes:

• Fixed ThreeCheckBoard.mirror() and CrazyhouseBoard.mirror(), which were previously resetting remaining
checks and pockets respectively. Thanks @QueensGambit.

Changes:

• Board.move_stack is now guaranteed to be UCI compatible with respect to the representation of castling moves
and board.chess960.

• Drop support for Python 3.3, which is long past end of life.

• chess.uci: The position command now manages UCI_Chess960 and UCI_Variant automatically.

• chess.uci: The position command will now always send the entire history of moves from the root position.

• Various coding style fixes and improvements. Thanks @hugovk.

New features:

• Added Board.root().

8.9.24 New in v0.23.6

Bugfixes:

• Gaviota: Fix Python based Gaviota tablebase probing when there are multiple en passant captures. Thanks
@bjoernholzhauer.

• Syzygy: Fix DTZ for some mate in 1 positions. Similarly to the fix from v0.23.1 this is mostly cosmetic.

• Syzygy: Fix DTZ off-by-one in some 6 piece antichess positions with moves that threaten to force a capture.
This is mostly cosmetic.

Changes:

• Let uci.Engine.position() send history of at least 8 moves if available. Previously it sent only moves that were
relevant for repetition detection. This is mostly useful for Lc0. Once performance issues are solved, a future
version will always send the entire history. Thanks @SashaMN and @Mk-Chan.

• Various documentation fixes and improvements.

New features:

• Added polyglot.MemoryMappedReader.get(board, default=None).

68 Chapter 8. Contents

python-chess, Release 0.31.1

8.9.25 New in v0.23.5

Bugfixes:

• Atomic chess: KNvKN is not insufficient material.

• Crazyhouse: Detect insufficient material. This can not happen unless the game was started with insufficient
material.

Changes:

• Better error messages when parsing info from UCI engine fails.

• Better error message for b.set_board_fen(b.fen()).

8.9.26 New in v0.23.4

New features:

• XBoard: Support pondering. Thanks Manik Charan.

• UCI: Support unofficial info ebf.

Bugfixes:

• Implement 16 bit DTZ mapping, which is required for some of the longest 7 piece endgames.

8.9.27 New in v0.23.3

New features:

• XBoard: Support variant. Thanks gbtami.

8.9.28 New in v0.23.2

Bugfixes:

• XBoard: Handle multiple features and features with spaces. Thanks gbtami.

• XBoard: Ignore debug output prefixed with #. Thanks Dan Ravensloft and Manik Charan.

8.9.29 New in v0.23.1

Bugfixes:

• Fix DTZ in case of mate in 1. This is a cosmetic fix, as the previous behavior was only off by one (which is
allowed by design).

8.9. Changelog for python-chess 69

python-chess, Release 0.31.1

8.9.30 New in v0.23.0

New features:

• Experimental support for 7 piece Syzygy tablebases.

Changes:

• chess.syzygy.filenames() was renamed to tablenames() and gained an optional piece_count=6 argument.

• chess.syzygy.normalize_filename() was renamed to normalize_tablename().

• The undocumented constructors of chess.syzygy.WdlTable and chess.syzygy.DtzTable have been changed.

8.9.31 New in v0.22.2

Bugfixes:

• In standard chess promoted pieces were incorrectly considered as distinguishable from normal pieces with regard
to position equality and threefold repetition. Thanks to kn-sq-tb for reporting.

Changes:

• The PGN game.headers are now a custom mutable mapping that validates the validity of tag names.

• Basic attack and pin methods moved to BaseBoard.

• Documentation fixes and improvements.

New features:

• Added Board.lan() for long algebraic notation.

8.9.32 New in v0.22.1

New features:

• Added Board.mirror(), SquareSet.mirror() and bswap().

• Added chess.pgn.GameNode.accept_subgame().

• XBoard: Added resign, analyze, exit, name, rating, computer, egtpath, pause, resume. Completed option pars-
ing.

Changes:

• chess.pgn: Accept FICS wilds without warning.

• XBoard: Inform engine about game results.

Bugfixes:

• chess.pgn: Allow games without movetext.

• XBoard: Fixed draw handling.

70 Chapter 8. Contents

python-chess, Release 0.31.1

8.9.33 New in v0.22.0

Changes:

• len(board.legal_moves) replaced by board.legal_moves.count(). Previously list(board.legal_moves) was gen-
erating moves twice, resulting in a considerable slowdown. Thanks to Martin C. Doege for reporting.

• Dropped Python 2.6 support.

• XBoard: offer_draw renamed to draw.

New features:

• XBoard: Added DrawHandler.

8.9.34 New in v0.21.2

Changes:

• chess.svg is now fully SVG Tiny 1.2 compatible. Removed chess.svg.DEFAULT_STYLE which would from now
on be always empty.

8.9.35 New in v0.21.1

Bugfixes:

• Board.set_piece_at() no longer shadows optional promoted argument from BaseBoard.

• Fixed ThreeCheckBoard.is_irreversible() and ThreeCheckBoard._transposition_key().

New features:

• Added Game.without_tag_roster(). chess.pgn.StringExporter() can now handle games without any headers.

• XBoard: white, black, random, nps, otim, undo, remove. Thanks to Manik Charan.

Changes:

• Documentation fixes and tweaks by Boštjan Mejak.

• Changed unicode character for empty squares in Board.unicode().

8.9.36 New in v0.21.0

Release yanked.

8.9.37 New in v0.20.1

Bugfixes:

• Fix arrow positioning on SVG boards.

• Documentation fixes and improvements, making most doctests runnable.

8.9. Changelog for python-chess 71

python-chess, Release 0.31.1

8.9.38 New in v0.20.0

Bugfixes:

• Some XBoard commands were not returning futures.

• Support semicolon comments in PGNs.

Changes:

• Changed FEN and EPD formatting options. It is now possible to include en passant squares in FEN and X-FEN
style, or to include only strictly relevant en passant squares.

• Relax en passant square validation in Board.set_fen().

• Ensure is_en_passant(), is_capture(), is_zeroing() and is_irreversible() strictly return bools.

• Accept Z0 as a null move in PGNs.

New features:

• XBoard: Add memory, core, stop and movenow commands. Abstract post/nopost. Initial FeatureMap support.
Support usermove.

• Added Board.has_pseudo_legal_en_passant().

• Added Board.piece_map().

• Added SquareSet.carry_rippler().

• Factored out some (unstable) low level APIs: BB_CORNERS, _carry_rippler(), _edges().

8.9.39 New in v0.19.0

New features:

• Experimental XBoard engine support. Thanks to Manik Charan and Cash Costello. Expect breaking changes
in future releases.

• Added an undocumented chess.polyglot.ZobristHasher to make Zobrist hashing easier to extend.

Bugfixes:

• Merely pseudo-legal en passant does no longer count for repetitions.

• Fixed repetition detection in Three-Check and Crazyhouse. (Previously check counters and pockets were ig-
nored.)

• Checking moves in Three-Check are now considered as irreversible by ThreeCheckBoard.is_irreversible().

• chess.Move.from_uci(“”) was raising IndexError instead of ValueError. Thanks Jonny Balls.

Changes:

• chess.syzygy.Tablebases constructor no longer supports directly opening a directory. Use
chess.syzygy.open_tablebases().

• chess.gaviota.PythonTablebases and NativeTablebases constructors no longer support directly opening a direc-
tory. Use chess.gaviota.open_tablebases().

• chess.Board instances are now compared by the position they represent, not by exact match of the internal data
structures (or even move history).

• Relaxed castling right validation in Chess960: Kings/rooks of opposing sites are no longer required to be on the
same file.

72 Chapter 8. Contents

python-chess, Release 0.31.1

• Removed misnamed Piece.__unicode__() and BaseBoard.__unicode__(). Use Piece.unicode_symbol() and
BaseBoard.unicode() instead.

• Changed chess.SquareSet.__repr__().

• Support [Variant “normal”] in PGNs.

• pip install python-chess[engine] instead of python-chess[uci] (since the extra dependencies are required for both
UCI and XBoard engines).

• Mixed documentation fixes and improvements.

8.9.40 New in v0.18.4

Changes:

• Support [Variant “fischerandom”] in PGNs for Cutechess compability. Thanks to Steve Maughan for reporting.

8.9.41 New in v0.18.3

Bugfixes:

• chess.gaviota.NativeTablebases.get_dtm() and get_wdl() were missing.

8.9.42 New in v0.18.2

Bugfixes:

• Fixed castling in atomic chess when there is a rank attack.

• The halfmove clock in Crazyhouse is no longer incremented unconditionally. Crazy-
houseBoard.is_zeroing(move) now considers pawn moves and captures as zeroing. Added
Board.is_irreversible(move) that can be used instead.

• Fixed an inconsistency where the chess.pgn tokenizer accepts long algebraic notation but Board.parse_san() did
not.

Changes:

• Added more NAG constants in chess.pgn.

8.9.43 New in v0.18.1

Bugfixes:

• Crazyhouse drops were accepted as pseudo-legal (and legal) even if the respective piece was not in the pocket.

• CrazyhouseBoard.pop() was failing to undo en passant moves.

• CrazyhouseBoard.pop() was always returning None.

• Move.__copy__() was failing to copy Crazyhouse drops.

• Fix ~ order (marker for promoted pieces) in FENs.

• Promoted pieces in Crazyhouse were not communicated with UCI engines.

Changes:

• ThreeCheckBoard.uci_variant changed from threecheck to 3check.

8.9. Changelog for python-chess 73

python-chess, Release 0.31.1

8.9.44 New in v0.18.0

Bugfixes:

• Fixed Board.parse_uci() for crazyhouse drops. Thanks to Ryan Delaney.

• Fixed AtomicBoard.is_insufficient_material().

• Fixed signature of SuicideBoard.was_into_check().

• Explicitly close input and output streams when a chess.uci.PopenProcess terminates.

• The documentation of Board.attackers() was wrongly stating that en passant capturable pawns are considered
attacked.

Changes:

• chess.SquareSet is no longer hashable (since it is mutable).

• Removed functions and constants deprecated in v0.17.0.

• Dropped gmpy2 and gmpy as optional dependencies. They were no longer improving performance.

• Various tweaks and optimizations for 5% improvement in PGN parsing and perft speed. (Signature of _is_safe
and _ep_skewered changed).

• Rewritten chess.svg.board() using xml.etree. No longer supports pre and post. Use an XML parser if you need
to modify the SVG. Now only inserts actually used piece defintions.

• Untangled UCI process and engine instanciation, changing signatures of constructors and allowing arbitrary
arguments to subprocess.Popen.

• Coding style and documentation improvements.

New features:

• chess.svg.board() now supports arrows. Thanks to @rheber for implementing this feature.

• Let chess.uci.PopenEngine consistently handle Ctrl+C across platforms and Python versions.
chess.uci.popen_engine() now supports a setpgrp keyword argument to start the engine process in a new
process group. Thanks to @dubiousjim.

• Added board.king(color) to find the (royal) king of a given side.

• SVGs now have viewBox and chess.svg.board(size=None) supports and defaults to None (i.e. scaling to the size
of the container).

8.9.45 New in v0.17.0

Changes:

• Rewritten move generator, various performance tweaks, code simplications (500 lines removed) amounting to
doubled PGN parsing and perft speed.

• Removed board.generate_evasions() and board.generate_non_evasions().

• Removed board.transpositions. Transpositions are now counted on demand.

• file_index(), rank_index(), and pop_count() have been renamed to square_file(), square_rank() and popcount()
respectively. Aliases will be removed in some future release.

• STATUS_ILLEGAL_CHECK has been renamed to STATUS_RACE_CHECK. The alias will be removed in a
future release.

74 Chapter 8. Contents

python-chess, Release 0.31.1

• Removed DIAG_ATTACKS_NE, DIAG_ATTACKS_NW, RANK_ATTACKS and FILE_ATTACKS as well as
the corresponding masks. New attack tables BB_DIAG_ATTACKS (combined both diagonal tables),
BB_RANK_ATTACKS and BB_FILE_ATTACKS are indexed by square instead of mask.

• board.push() no longer requires pseudo-legality.

• Documentation improvements.

Bugfixes:

• Positions in variant end are now guaranteed to have no legal moves. board.is_variant_end() has been added
to test for special variant end conditions. Thanks to salvador-dali.

• chess.svg: Fixed a typo in the class names of black queens. Fixed fill color for black rooks and queens. Added
SVG Tiny support. These combined changes fix display in a number of applications, including Jupyter Qt
Console. Thanks to Alexander Meshcheryakov.

• board.ep_square was not consistently None instead of 0.

• Detect invalid racing kings positions: STATUS_RACE_OVER, STATUS_RACE_MATERIAL.

• SAN_REGEX, FEN_CASTLING_REGEX and TAG_REGEX now try to match the entire string and no longer
accept newlines.

• Fixed Move.__hash__() for drops.

New features:

• board.remove_piece_at() now returns the removed piece.

• Added square_distance() and square_mirror().

• Added msb(), lsb(), scan_reversed() and scan_forward().

• Added BB_RAYS and BB_BETWEEN.

8.9.46 New in v0.16.2

Changes:

• board.move_stack now contains the exact move objects added with Board.push() (instead of normalized copies
for castling moves). This ensures they can be used with Board.variation_san() amongst others.

• board.ep_square is now None instead of 0 for no en passant square.

• chess.svg: Better vector graphics for knights. Thanks to ProgramFox.

• Documentation improvements.

8.9.47 New in v0.16.1

Bugfixes:

• Explosions in atomic chess were not destroying castling rights. Thanks to ProgramFOX for finding this issue.

8.9. Changelog for python-chess 75

python-chess, Release 0.31.1

8.9.48 New in v0.16.0

Bugfixes:

• pin_mask(), pin() and is_pinned() make more sense when already in check. Thanks to Ferdinand Mosca.

New features:

• Variant support: Suicide, Giveaway, Atomic, King of the Hill, Racing Kings, Horde, Three-check, Crazy-
house. chess.Move now supports drops.

• More fine grained dependencies. Use pip install python-chess[uci,gaviota] to install dependencies for the full
feature set.

• Added chess.STATUS_EMPTY and chess.STATUS_ILLEGAL_CHECK.

• The board.promoted mask keeps track of promoted pieces.

• Optionally copy boards without the move stack: board.copy(stack=False).

• examples/bratko_kopec now supports avoid move (am), variants and displays fractional scores immidiately.
Thanks to Daniel Dugovic.

• perft.py rewritten with multi-threading support and moved to examples/perft.

• chess.syzygy.dependencies(), chess.syzygy.all_dependencies() to generate Syzygy tablebase dependencies.

Changes:

• Endgame tablebase probing (Syzygy, Gaviota): probe_wdl() , probe_dtz() and probe_dtm() now raise Key-
Error or MissingTableError instead of returning None. If you prefer getting None in case of an error use
get_wdl(), get_dtz() and get_dtm().

• chess.pgn.BaseVisitor.result() returns True by default and is no longer used by chess.pgn.read_game() if no
game was found.

• Non-fast-forward update of the Git repository to reduce size (old binary test assets removed).

• board.pop() now uses a boardstate stack to undo moves.

• uci.engine.position() will send the move history only until the latest zeroing move.

• Optimize board.clean_castling_rights() and micro-optimizations improving PGN parser performance by around
20%.

• Syzygy tables now directly use the endgame name as hash keys.

• Improve test performance (especially on Travis CI).

• Documentation updates and improvements.

8.9.49 New in v0.15.4

New features:

• Highlight last move and checks when rendering board SVGs.

76 Chapter 8. Contents

python-chess, Release 0.31.1

8.9.50 New in v0.15.3

Bugfixes:

• pgn.Game.errors was not populated as documented. Thanks to Ryan Delaney for reporting.

New features:

• Added pgn.GameNode.add_line() and pgn.GameNode.main_line() which make it easier to work with lists of
moves as variations.

8.9.51 New in v0.15.2

Bugfixes:

• Fix a bug where shift_right() and shift_2_right() were producing integers larger than 64bit when shifting squares
off the board. This is very similar to the bug fixed in v0.15.1. Thanks to piccoloprogrammatore for reporting.

8.9.52 New in v0.15.1

Bugfixes:

• Fix a bug where shift_up_right() and shift_up_left() were producing integers larger than 64bit when shifting
squares off the board.

New features:

• Replaced __html__ with experimental SVG rendering for IPython.

8.9.53 New in v0.15.0

Changes:

• chess.uci.Score no longer has upperbound and lowerbound attributes. Previously these were always False.

• Significant improvements of move generation speed, around 2.3x faster PGN parsing. Removed the follow-
ing internal attributes and methods of the Board class: attacks_valid, attacks_to, attacks_from, _pinned(), at-
tacks_valid_stack, attacks_from_stack, attacks_to_stack, generate_attacks().

• UCI: Do not send isready directly after go. Though allowed by the UCI protocol specification it is just not
nescessary and many engines were having trouble with this.

• Polyglot: Use less memory for uniform random choices from big opening books (reservoir sampling).

• Documentation improvements.

Bugfixes:

• Allow underscores in PGN header tags. Found and fixed by Bajusz Tamás.

New features:

• Added Board.chess960_pos() to identify the Chess960 starting position number of positions.

• Added chess.BB_BACKRANKS and chess.BB_PAWN_ATTACKS.

8.9. Changelog for python-chess 77

python-chess, Release 0.31.1

8.9.54 New in v0.14.1

Bugfixes:

• Backport Bugfix for Syzygy DTZ related to en passant. See official-stockfish/Stockfish@6e2ca97d93812b2.

Changes:

• Added optional argument max_fds=128 to chess.syzygy.open_tablebases(). An LRU cache is used to keep at
most max_fds files open. This allows using many tables without running out of file descriptors. Previously all
tables were opened at once.

• Syzygy and Gaviota now store absolute tablebase paths, in case you change the working directory of the process.

• The default implementation of chess.uci.InfoHandler.score() will no longer store score bounds in info[“score”],
only real scores.

• Added Board.set_chess960_pos().

• Documentation improvements.

8.9.55 New in v0.14.0

Changes:

• Board.attacker_mask() has been renamed to Board.attackers_mask() for consistency.

• The signature of Board.generate_legal_moves() and Board.generate_pseudo_legal_moves() has been
changed. Previously it was possible to select piece types for selective move generation:

Board.generate_legal_moves(castling=True, pawns=True, knights=True, bishops=True, rooks=True,
queens=True, king=True)

Now it is possible to select arbitrary sets of origin and target squares. to_mask uses the corresponding rook
squares for castling moves.

Board.generate_legal_moves(from_mask=BB_ALL, to_mask=BB)

To generate all knight and queen moves do:

board.generate_legal_moves(board.knights | board.queens)

To generate only castling moves use:

Board.generate_castling_moves(from_mask=BB_ALL, to_mask=BB_ALL)

• Additional hardening has been added on top of the bugfix from v0.13.3. Diagonal skewers on the last double
pawn move are now handled correctly, even though such positions can not be reached with a sequence of legal
moves.

• chess.syzygy now uses the more efficient selective move generation.

New features:

• The following move generation methods have been added: Board.generate_pseudo_legal_ep(from_mask=BB_ALL,
to_mask=BB_ALL), Board.generate_legal_ep(from_mask=BB_ALL, to_mask=BB_ALL),
Board.generate_pseudo_legal_captures(from_mask=BB_ALL, to_mask=BB_ALL),
Board.generate_legal_captures(from_mask=BB_ALL, to_mask=BB_ALL).

78 Chapter 8. Contents

mailto:official-stockfish/Stockfish@6e2ca97d93812b2

python-chess, Release 0.31.1

8.9.56 New in v0.13.3

This is a bugfix release for a move generation bug. Other than the bugfix itself there are only minimal fully back-
wardscompatible changes. You should update immediately.

Bugfixes:

• When capturing en passant, both the capturer and the captured pawn disappear from the fourth or fifth rank. If
those pawns were covering a horizontal attack on the king, then capturing en passant should not have been legal.

Board.generate_legal_moves() and Board.is_into_check() have been fixed.

The same principle applies for diagonal skewers, but nothing has been done in this release: If the last double
pawn move covers a diagonal attack, then the king would have already been in check.

v0.14.0 adds additional hardening for all cases. It is recommended you upgrade to v0.14.0 as soon as you can
deal with the non-backwards compatible changes.

Changes:

• chess.uci now uses subprocess32 if applicable (and available). Additionally a lock is used to work around a race
condition in Python 2, that can occur when spawning engines from multiple threads at the same time.

• Consistently handle tabs in UCI engine output.

8.9.57 New in v0.13.2

Changes:

• chess.syzygy.open_tablebases() now raises if the given directory does not exist.

• Allow visitors to handle invalid FEN tags in PGNs.

• Gaviota tablebase probing fails faster for piece counts > 5.

Minor new features:

• Added chess.pgn.Game.from_board().

8.9.58 New in v0.13.1

Changes:

• Missing SetUp tags in PGNs are ignored.

• Incompatible comparisons on chess.Piece, chess.Move, chess.Board and chess.SquareSet now return NotImple-
mented instead of False.

Minor new features:

• Factored out basic board operations to chess.BaseBoard. This is inherited by chess.Board and extended with the
usual move generation features.

• Added optional claim_draw argument to chess.Base.is_game_over().

• Added chess.Board.result(claim_draw=False).

• Allow chess.Board.set_piece_at(square, None).

• Added chess.SquareSet.from_square(square).

8.9. Changelog for python-chess 79

python-chess, Release 0.31.1

8.9.59 New in v0.13.0

• chess.pgn.Game.export() and chess.pgn.GameNode.export() have been removed and replaced with a new visitor
concept.

• chess.pgn.read_game() no longer takes an error_handler argument. Errors are now logged. Use the new visitor
concept to change this behaviour.

8.9.60 New in v0.12.5

Bugfixes:

• Context manager support for pure Python Gaviota probing code. Various documentation fixes for Gaviota
probing. Thanks to Jürgen Précour for reporting.

• PGN variation start comments for variations on the very first move were assigned to the game. Thanks to Norbert
Räcke for reporting.

8.9.61 New in v0.12.4

Bugfixes:

• Another en passant related Bugfix for pure Python Gaviota tablebase probing.

New features:

• Added pgn.GameNode.is_end().

Changes:

• Big speedup for pgn module. Boards are cached less agressively. Board move stacks are copied faster.

• Added tox.ini to specify test suite and flake8 options.

8.9.62 New in v0.12.3

Bugfixes:

• Some invalid castling rights were silently ignored by Board.set_fen(). Now it is ensured information is stored
for retrieval using Board.status().

8.9.63 New in v0.12.2

Bugfixes:

• Some Gaviota probe results were incorrect for positions where black could capture en passant.

80 Chapter 8. Contents

python-chess, Release 0.31.1

8.9.64 New in v0.12.1

Changes:

• Robust handling of invalid castling rights. You can also use the new method Board.clean_castling_rights() to
get the subset of strictly valid castling rights.

8.9.65 New in v0.12.0

New features:

• Python 2.6 support. Patch by vdbergh.

• Pure Python Gaviota tablebase probing. Thanks to Jean-Noël Avila.

8.9.66 New in v0.11.1

Bugfixes:

• syzygy.Tablebases.probe_dtz() has was giving wrong results for some positions with possible en passant captur-
ing. This was found and fixed upstream: https://github.com/official-stockfish/Stockfish/issues/394.

• Ignore extra spaces in UCI info lines, as for example sent by the Hakkapeliitta engine. Thanks to Jürgen Précour
for reporting.

8.9.67 New in v0.11.0

Changes:

• Chess960 support and the representation of castling moves has been changed.

The constructor of board has a new chess960 argument, defaulting to False: Board(fen=STARTING_FEN,
chess960=False). That property is available as Board.chess960.

In Chess960 mode the behaviour is as in the previous release. Castling moves are represented as a king move to
the corresponding rook square.

In the default standard chess mode castling moves are represented with the standard UCI notation, e.g. e1g1 for
king-side castling.

Board.uci(move, chess960=None) creates UCI representations for moves. Unlike Move.uci() it can convert them
in the context of the current position.

Board.has_chess960_castling_rights() has been added to test for castling rights that are impossible in standard
chess.

The modules chess.polyglot, chess.pgn and chess.uci will transparently handle both modes.

• In a previous release Board.fen() has been changed to only display an en passant square if a legal en passant
move is indeed possible. This has now also been adapted for Board.shredder_fen() and Board.epd().

New features:

• Get individual FEN components: Board.board_fen(), Board.castling_xfen(), Board.castling_shredder_fen().

• Use Board.has_legal_en_passant() to test if a position has a legal en passant move.

• Make repr(board.legal_moves) human readable.

8.9. Changelog for python-chess 81

https://github.com/official-stockfish/Stockfish/issues/394

python-chess, Release 0.31.1

8.9.68 New in v0.10.1

Bugfixes:

• Fix use-after-free in Gaviota tablebase initialization.

8.9.69 New in v0.10.0

New dependencies:

• If you are using Python < 3.2 you have to install futures in order to use the chess.uci module.

Changes:

• There are big changes in the UCI module. Most notably in async mode multiple commands can be executed at
the same time (e.g. go infinite and then stop or go ponder and then ponderhit).

go infinite and go ponder will now wait for a result, i.e. you may have to call stop or ponderhit from a different
thread or run the commands asynchronously.

stop and ponderhit no longer have a result.

• The values of the color constants chess.WHITE and chess.BLACK have been changed. Previously WHITE was
0, BLACK was 1. Now WHITE is True, BLACK is False. The recommended way to invert color is using not
color.

• The pseudo piece type chess.NONE has been removed in favor of just using None.

• Changed the Board(fen) constructor. If the optional fen argument is not given behavior did not change. However
if None is passed explicitly an empty board is created. Previously the starting position would have been set up.

• Board.fen() will now only show completely legal en passant squares.

• Board.set_piece_at() and Board.remove_piece_at() will now clear the move stack, because the old moves may
not be valid in the changed position.

• Board.parse_uci() and Board.push_uci() will now accept null moves.

• Changed shebangs from #!/usr/bin/python to #!/usr/bin/env python for better virtualenv support.

• Removed unused game data files from repository.

Bugfixes:

• PGN: Prefer the game result from the game termination marker over * in the header. These should be identical
in standard compliant PGNs. Thanks to Skyler Dawson for reporting this.

• Polyglot: minimum_weight for find(), find_all() and choice() was not respected.

• Polyglot: Negative indexing of opening books was raising IndexError.

• Various documentation fixes and improvements.

New features:

• Experimental probing of Gaviota tablebases via libgtb.

• New methods to construct boards:

>>> chess.Board.empty()
Board('8/8/8/8/8/8/8/8 w - - 0 1')

>>> board, ops = chess.Board.from_epd("4k3/8/8/8/8/8/8/4K3 b - - fmvn 17; hmvc 13
→˓")

(continues on next page)

82 Chapter 8. Contents

python-chess, Release 0.31.1

(continued from previous page)

>>> board
Board('4k3/8/8/8/8/8/8/4K3 b - - 13 17')
>>> ops
{'fmvn': 17, 'hmvc': 13}

• Added Board.copy() and hooks to let the copy module to the right thing.

• Added Board.has_castling_rights(color), Board.has_kingside_castling_rights(color) and
Board.has_queenside_castling_rights(color).

• Added Board.clear_stack().

• Support common set operations on chess.SquareSet().

8.9.70 New in v0.9.1

Bugfixes:

• UCI module could not handle castling ponder moves. Thanks to Marco Belli for reporting.

• The initial move number in PGNs was missing, if black was to move in the starting position. Thanks to Jürgen
Précour for reporting.

• Detect more impossible en passant squares in Board.status(). There already was a requirement for a pawn on
the fifth rank. Now the sixth and seventh rank must be empty, additionally. We do not do further retrograde
analysis, because these are the only cases affecting move generation.

8.9.71 New in v0.8.3

Bugfixes:

• The initial move number in PGNs was missing, if black was to move in the starting position. Thanks to Jürgen
Précour for reporting.

• Detect more impossible en passant squares in Board.status(). There already was a requirement for a pawn on
the fifth rank. Now the sixth and seventh rank must be empty, additionally. We do not do further retrograde
analysis, because these are the only cases affecting move generation.

8.9.72 New in v0.9.0

This is a big update with quite a few breaking changes. Carefully review the changes before upgrading. It’s no
problem if you can not update right now. The 0.8.x branch still gets bugfixes.

Incompatible changes:

• Removed castling right constants. Castling rights are now represented as a bitmask of the rook square. For
example:

>>> board = chess.Board()

>>> # Standard castling rights.
>>> board.castling_rights == chess.BB_A1 | chess.BB_H1 | chess.BB_A8 | chess.BB_H8
True

>>> # Check for the presence of a specific castling right.
>>> can_white_castle_queenside = chess.BB_A1 & board.castling_rights

8.9. Changelog for python-chess 83

python-chess, Release 0.31.1

Castling moves were previously encoded as the corresponding king movement in UCI, e.g. e1f1 for white king-
side castling. Now castling moves are encoded as a move to the corresponding rook square (UCI_Chess960-
style), e.g. e1a1.

You may use the new methods Board.uci(move, chess960=True), Board.parse_uci(uci) and Board.push_uci(uci)
to handle this transparently.

The uci module takes care of converting moves when communicating with an engine that is not in UCI_Chess960
mode.

• The get_entries_for_position(board) method of polyglot opening book readers has been changed to
find_all(board, minimum_weight=1). By default entries with weight 0 are excluded.

• The Board.pieces lookup list has been removed.

• In 0.8.1 the spelling of repetition (was repitition) was fixed. can_claim_threefold_repetition() and
is_fivefold_repetition() are the affected method names. Aliases are now removed.

• Board.set_epd() will now interpret bm, am as a list of moves for the current position and pv as a variation
(represented by a list of moves). Thanks to Jordan Bray for reporting this.

• Removed uci.InfoHandler.pre_bestmove() and uci.InfoHandler.post_bestmove().

• uci.InfoHandler().info[“score”] is now relative to multipv. Use

>>> with info_handler as info:
... if 1 in info["score"]:
... cp = info["score"][1].cp

where you were previously using

>>> with info_handler as info:
... if "score" in info:
... cp = info["score"].cp

• Clear uci.InfoHandler() dictionary at the start of new searches (new on_go()), not at the end of searches.

• Renamed PseudoLegalMoveGenerator.bitboard and LegalMoveGenerator.bitboard to PseudoLegalMoveGen-
erator.board and LegalMoveGenerator.board, respectively.

• Scripts removed.

• Python 3.2 compability dropped. Use Python 3.3 or higher. Python 2.7 support is not affected.

New features:

• Introduced Chess960 support. Board(fen) and Board.set_fen(fen) now support X-FENs. Added
Board.shredder_fen(). Board.status(allow_chess960=True) has an optional argument allowing to insist on stan-
dard chess castling rules. Added Board.is_valid(allow_chess960=True).

• Improved move generation using Shatranj-style direct lookup. Removed rotated bitboards. Perft speed has
been more than doubled.

• Added choice(board) and weighted_choice(board) for polyglot opening book readers.

• Added Board.attacks(square) to determine attacks from a given square. There already was
Board.attackers(color, square) returning attacks to a square.

• Added Board.is_en_passant(move), Board.is_capture(move) and Board.is_castling(move).

• Added Board.pin(color, square) and Board.is_pinned(color, square).

• There is a new method Board.pieces(piece_type, color) to get a set of squares with the specified pieces.

• Do expensive Syzygy table initialization on demand.

84 Chapter 8. Contents

http://arxiv.org/pdf/0704.3773.pdf

python-chess, Release 0.31.1

• Allow promotions like e8Q (usually e8=Q) in Board.parse_san() and PGN files.

• Patch by Richard C. Gerkin: Added Board.__unicode__() just like Board.__str__() but with unicode pieces.

• Patch by Richard C. Gerkin: Added Board.__html__().

8.9.73 New in v0.8.2

Bugfixes:

• pgn.Game.setup() with the standard starting position was failing when the standard starting position was already
set. Thanks to Jordan Bray for reporting this.

Optimizations:

• Remove bswap() from Syzygy decompression hot path. Directly read integers with the correct endianness.

8.9.74 New in v0.8.1

• Fixed pondering mode in uci module. For example ponderhit() was blocking indefinitely. Thanks to Valeriy
Huz for reporting this.

• Patch by Richard C. Gerkin: Moved searchmoves to the end of the UCI go command, where it will not cause
other command parameters to be ignored.

• Added missing check or checkmate suffix to castling SANs, e.g. O-O-O#.

• Fixed off-by-one error in polyglot opening book binary search. This would not have caused problems for real
opening books.

• Fixed Python 3 support for reverse polyglot opening book iteration.

• Bestmoves may be literally (none) in UCI protocol, for example in checkmate positions. Fix parser and return
None as the bestmove in this case.

• Fixed spelling of repetition (was repitition). can_claim_threefold_repetition() and is_fivefold_repetition() are
the affected method names. Aliases are there for now, but will be removed in the next release. Thanks to Jimmy
Patrick for reporting this.

• Added SquareSet.__reversed__().

• Use containerized tests on Travis CI, test against Stockfish 6, improved test coverage amd various minor clean-
ups.

8.9.75 New in v0.8.0

• Implement Syzygy endgame tablebase probing. https://syzygy-tables.info is an example project that provides
a public API using the new features.

• The interface for aynchronous UCI command has changed to mimic concurrent.futures. is_done() is now just
done(). Callbacks will receive the command object as a single argument instead of the result. The result property
and wait() have been removed in favor of a synchronously waiting result() method.

• The result of the stop and go UCI commands are now named tuples (instead of just normal tuples).

• Add alias Board for Bitboard.

• Fixed race condition during UCI engine startup. Lines received during engine startup sometimes needed to be
processed before the Engine object was fully initialized.

8.9. Changelog for python-chess 85

https://syzygy-tables.info/apidoc?fen=6N1/5KR1/2n5/8/8/8/2n5/1k6%20w%20-%20-%200%201

python-chess, Release 0.31.1

8.9.76 New in v0.7.0

• Implement UCI engine communication.

• Patch by Matthew Lai: Add caching for gameNode.board().

8.9.77 New in v0.6.0

• If there are comments in a game before the first move, these are now assigned to Game.comment instead of
Game.starting_comment. Game.starting_comment is ignored from now on. Game.starts_variation() is no
longer true. The first child node of a game can no longer have a starting comment. It is possible to have a
game with Game.comment set, that is otherwise completely empty.

• Fix export of games with variations. Previously the moves were exported in an unusual (i.e. wrong) order.

• Install gmpy2 or gmpy if you want to use slightly faster binary operations.

• Ignore superfluous variation opening brackets in PGN files.

• Add GameNode.san().

• Remove sparse_pop_count(). Just use pop_count().

• Remove next_bit(). Now use bit_scan().

8.9.78 New in v0.5.0

• PGN parsing is now more robust: read_game() ignores invalid tokens. Still exceptions are going to be thrown
on illegal or ambiguous moves, but this behaviour can be changed by passing an error_handler argument.

>>> # Raises ValueError:
>>> game = chess.pgn.read_game(file_with_illegal_moves)

>>> # Silently ignores errors and continues parsing:
>>> game = chess.pgn.read_game(file_with_illegal_moves, None)

>>> # Logs the error, continues parsing:
>>> game = chess.pgn.read_game(file_with_illegal_moves, logger.exception)

If there are too many closing brackets this is now ignored.

Castling moves like 0-0 (with zeros) are now accepted in PGNs. The Bitboard.parse_san() method remains
strict as always, though.

Previously the parser was strictly following the PGN spefification in that empty lines terminate a game. So a
game like

[Event "?"]

{ Starting comment block }

1. e4 e5 2. Nf3 Nf6 *

would have ended directly after the starting comment. To avoid this, the parser will now look ahead until it finds
at least one move or a termination marker like *, 1-0, 1/2-1/2 or 0-1.

• Introduce a new function scan_headers() to quickly scan a PGN file for headers without having to parse the full
games.

86 Chapter 8. Contents

python-chess, Release 0.31.1

• Minor testcoverage improvements.

8.9.79 New in v0.4.2

• Fix bug where pawn_moves_from() and consequently is_legal() weren’t handling en passant correctly. Thanks
to Norbert Naskov for reporting.

8.9.80 New in v0.4.1

• Fix is_fivefold_repitition(): The new fivefold repetition rule requires the repetitions to occur on alternating
consecutive moves.

• Minor testing related improvements: Close PGN files, allow running via setuptools.

• Add recently introduced features to README.

8.9.81 New in v0.4.0

• Introduce can_claim_draw(), can_claim_fifty_moves() and can_claim_threefold_repitition().

• Since the first of July 2014 a game is also over (even without claim by one of the players) if there were 75
moves without a pawn move or capture or a fivefold repetition. Let is_game_over() respect that. Introduce
is_seventyfive_moves() and is_fivefold_repitition(). Other means of ending a game take precedence.

• Threefold repetition checking requires efficient hashing of positions to build the table. So performance improve-
ments were needed there. The default polyglot compatible zobrist hashes are now built incrementally.

• Fix low level rotation operations l90(), l45() and r45(). There was no problem in core because correct versions
of the functions were inlined.

• Fix equality and inequality operators for Bitboard, Move and Piece. Also make them robust against comparisons
with incompatible types.

• Provide equality and inequality operators for SquareSet and polyglot.Entry.

• Fix return values of incremental arithmetical operations for SquareSet.

• Make polyglot.Entry a collections.namedtuple.

• Determine and improve test coverage.

• Minor coding style fixes.

8.9.82 New in v0.3.1

• Bitboard.status() now correctly detects STATUS_INVALID_EP_SQUARE, instead of errors or false reports.

• Polyglot opening book reader now correctly handles knight underpromotions.

• Minor coding style fixes, including removal of unused imports.

8.9. Changelog for python-chess 87

python-chess, Release 0.31.1

8.9.83 New in v0.3.0

• Rename property half_moves of Bitboard to halfmove_clock.

• Rename property ply of Bitboard to fullmove_number.

• Let PGN parser handle symbols like !, ?, !? and so on by converting them to NAGs.

• Add a human readable string representation for Bitboards.

>>> print(chess.Bitboard())
r n b q k b n r
p p p p p p p p
.
.
.
.
P P P P P P P P
R N B Q K B N R

• Various documentation improvements.

8.9.84 New in v0.2.0

• Implement PGN parsing and writing.

• Hugely improve test coverage and use Travis CI for continuous integration and testing.

• Create an API documentation.

• Improve Polyglot opening-book handling.

8.9.85 New in v0.1.0

Apply the lessons learned from the previous releases, redesign the API and implement it in pure Python.

8.9.86 New in v0.0.4

Implement the basics in C++ and provide bindings for Python. Obviously performance was a lot better - but at the
expense of having to compile code for the target platform.

8.9.87 Pre v0.0.4

First experiments with a way too slow pure Python API, creating way too many objects for basic operations.

88 Chapter 8. Contents

CHAPTER

NINE

INDICES AND TABLES

• genindex

• search

89

python-chess, Release 0.31.1

90 Chapter 9. Indices and tables

INDEX

A
accept() (chess.pgn.Game method), 35
accept() (chess.pgn.GameNode method), 37
accept_subgame() (chess.pgn.GameNode method),

37
add() (chess.SquareSet method), 32
add() (chess.variant.CrazyhousePocket method), 59
add_directory() (chess.gaviota.PythonTablebase

method), 43
add_directory() (chess.syzygy.Tablebase method),

44
add_line() (chess.pgn.GameNode method), 37
add_main_variation() (chess.pgn.GameNode

method), 37
add_variation() (chess.pgn.GameNode method),

37
analyse() (chess.engine.EngineProtocol method), 49
analysis() (chess.engine.EngineProtocol method),

51
AnalysisComplete (class in chess.engine), 55
AnalysisResult (class in chess.engine), 52
Arrow (class in chess.svg), 57
attackers() (chess.BaseBoard method), 30
attacks() (chess.BaseBoard method), 29

B
BaseBoard (class in chess), 29
BaseVisitor (class in chess.pgn), 38
begin_game() (chess.pgn.BaseVisitor method), 38
begin_headers() (chess.pgn.BaseVisitor method),

38
begin_variation() (chess.pgn.BaseVisitor

method), 38
BestMove (class in chess.engine), 52
black() (chess.engine.PovScore method), 50
black_clock (chess.engine.Limit attribute), 48
black_inc (chess.engine.Limit attribute), 48
Board (class in chess), 21
board() (chess.pgn.GameNode method), 36
board() (in module chess.svg), 57
board_fen() (chess.BaseBoard method), 30
BoardBuilder (class in chess.pgn), 39

C
can_claim_draw() (chess.Board method), 24
can_claim_fifty_moves() (chess.Board method),

24
can_claim_threefold_repetition()

(chess.Board method), 24
carry_rippler() (chess.SquareSet method), 33
castling_rights (chess.Board attribute), 21
checkers() (chess.Board method), 23
chess.A1 (built-in variable), 19
chess.B1 (built-in variable), 19
chess.BB_ALL (built-in variable), 33
chess.BB_BACKRANKS (built-in variable), 33
chess.BB_CENTER (built-in variable), 34
chess.BB_CORNERS (built-in variable), 34
chess.BB_DARK_SQUARES (built-in variable), 33
chess.BB_EMPTY (built-in variable), 33
chess.BB_FILES (built-in variable), 33
chess.BB_LIGHT_SQUARES (built-in variable), 33
chess.BB_RANKS (built-in variable), 33
chess.BB_SQUARES (built-in variable), 33
chess.BISHOP (built-in variable), 19
chess.BLACK (built-in variable), 19
chess.FILE_NAMES (built-in variable), 19
chess.G8 (built-in variable), 19
chess.H8 (built-in variable), 19
chess.KING (built-in variable), 19
chess.KNIGHT (built-in variable), 19
chess.PAWN (built-in variable), 19
chess.polyglot.POLYGLOT_RANDOM_ARRAY

(built-in variable), 42
chess.QUEEN (built-in variable), 19
chess.RANK_NAMES (built-in variable), 20
chess.ROOK (built-in variable), 19
chess.SQUARE_NAMES (built-in variable), 19
chess.SQUARES (built-in variable), 19
chess.WHITE (built-in variable), 19
chess960 (chess.Board attribute), 22
chess960_pos() (chess.BaseBoard method), 31
chess960_pos() (chess.Board method), 26
choice() (chess.polyglot.MemoryMappedReader

method), 42

91

python-chess, Release 0.31.1

clean_castling_rights() (chess.Board method),
28

clear() (chess.Board method), 23
clear() (chess.SquareSet method), 33
clear_board() (chess.BaseBoard method), 29
clear_board() (chess.Board method), 23
clear_stack() (chess.Board method), 23
close() (chess.engine.SimpleEngine method), 56
close() (chess.gaviota.PythonTablebase method), 43
close() (chess.polyglot.MemoryMappedReader

method), 42
close() (chess.syzygy.Tablebase method), 46
color (chess.Piece attribute), 20
color (chess.svg.Arrow attribute), 58
color_at() (chess.BaseBoard method), 29
comment (chess.pgn.GameNode attribute), 36
configure() (chess.engine.EngineProtocol method),

53
copy() (chess.BaseBoard method), 31
copy() (chess.Board method), 29
copy() (chess.variant.CrazyhousePocket method), 59
count() (chess.variant.CrazyhousePocket method), 59
CrazyhouseBoard (class in chess.variant), 59
CrazyhousePocket (class in chess.variant), 59

D
default (chess.engine.Option attribute), 54
demote() (chess.pgn.GameNode method), 37
depth (chess.engine.Limit attribute), 47
discard() (chess.SquareSet method), 33
draw_offered (chess.engine.PlayResult attribute), 48
drop (chess.Move attribute), 20

E
empty() (chess.BaseBoard class method), 31
empty() (chess.Board class method), 29
empty() (chess.engine.AnalysisResult method), 52
end() (chess.pgn.GameNode method), 36
end_game() (chess.pgn.BaseVisitor method), 38
end_headers() (chess.pgn.BaseVisitor method), 38
end_variation() (chess.pgn.BaseVisitor method),

38
EngineError (class in chess.engine), 55
EngineProtocol (class in chess.engine), 47, 49, 51,

53, 55
EngineTerminatedError (class in chess.engine),

55
Entry (class in chess.polyglot), 41
ep_square (chess.Board attribute), 22
epd() (chess.Board method), 26
errors (chess.pgn.Game attribute), 35
EventLoopPolicy() (in module chess.engine), 56

F
fen() (chess.Board method), 25
FileExporter (class in chess.pgn), 39
find() (chess.polyglot.MemoryMappedReader

method), 42
find_all() (chess.polyglot.MemoryMappedReader

method), 42
find_move() (chess.Board method), 25
find_variant() (in module chess.variant), 58
from_board() (chess.pgn.Game class method), 35
from_chess960_pos() (chess.BaseBoard class

method), 31
from_chess960_pos() (chess.Board class method),

29
from_epd() (chess.Board class method), 29
from_square (chess.Move attribute), 20
from_square() (chess.SquareSet class method), 33
from_symbol() (chess.Piece class method), 20
from_uci() (chess.Move class method), 21
fullmove_number (chess.Board attribute), 22

G
Game (class in chess.pgn), 35
game() (chess.pgn.GameNode method), 36
GameBuilder (class in chess.pgn), 38
GameNode (class in chess.pgn), 36
get() (chess.engine.AnalysisResult method), 52
gives_check() (chess.Board method), 23

H
halfmove_clock (chess.Board attribute), 22
handle_error() (chess.pgn.BaseVisitor method), 38
handle_error() (chess.pgn.GameBuilder method),

39
has_castling_rights() (chess.Board method), 28
has_chess960_castling_rights()

(chess.Board method), 28
has_insufficient_material() (chess.Board

method), 24
has_kingside_castling_rights()

(chess.Board method), 28
has_legal_en_passant() (chess.Board method),

25
has_pseudo_legal_en_passant() (chess.Board

method), 25
has_queenside_castling_rights()

(chess.Board method), 28
has_variation() (chess.pgn.GameNode method),

37
head (chess.svg.Arrow attribute), 57
headers (chess.pgn.Game attribute), 35
HeadersBuilder (class in chess.pgn), 39

92 Index

python-chess, Release 0.31.1

I
id (chess.engine.EngineProtocol attribute), 55
info (chess.engine.AnalysisResult attribute), 52
info (chess.engine.PlayResult attribute), 48
initialize() (chess.engine.EngineProtocol

method), 55
is_attacked_by() (chess.BaseBoard method), 30
is_capture() (chess.Board method), 27
is_castling() (chess.Board method), 28
is_check() (chess.Board method), 23
is_checkmate() (chess.Board method), 24
is_en_passant() (chess.Board method), 27
is_end() (chess.pgn.GameNode method), 36
is_fivefold_repetition() (chess.Board

method), 24
is_game_over() (chess.Board method), 23
is_insufficient_material() (chess.Board

method), 24
is_irreversible() (chess.Board method), 28
is_kingside_castling() (chess.Board method),

28
is_main_variation() (chess.pgn.GameNode

method), 37
is_mainline() (chess.pgn.GameNode method), 36
is_managed() (chess.engine.Option method), 54
is_mate() (chess.engine.PovScore method), 50
is_mate() (chess.engine.Score method), 51
is_pinned() (chess.BaseBoard method), 30
is_queenside_castling() (chess.Board method),

28
is_repetition() (chess.Board method), 24
is_seventyfive_moves() (chess.Board method),

24
is_stalemate() (chess.Board method), 24
is_valid() (chess.Board method), 28
is_variant_draw() (chess.Board method), 23
is_variant_end() (chess.Board method), 23
is_variant_loss() (chess.Board method), 23
is_variant_win() (chess.Board method), 23
is_zeroing() (chess.Board method), 27
isdisjoint() (chess.SquareSet method), 33
issubset() (chess.SquareSet method), 33
issuperset() (chess.SquareSet method), 33

K
key (chess.polyglot.Entry attribute), 41
king() (chess.BaseBoard method), 29

L
lan() (chess.Board method), 27
learn (chess.polyglot.Entry attribute), 41
legal_moves (chess.Board attribute), 22
Limit (class in chess.engine), 47

M
mainline() (chess.pgn.GameNode method), 37
mainline_moves() (chess.pgn.GameNode method),

37
mate (chess.engine.Limit attribute), 48
mate() (chess.engine.Score method), 50
max (chess.engine.Option attribute), 54
MemoryMappedReader (class in chess.polyglot), 42
min (chess.engine.Option attribute), 54
mirror() (chess.BaseBoard method), 31
mirror() (chess.Board method), 28
mirror() (chess.SquareSet method), 33
move (chess.engine.BestMove attribute), 52
move (chess.engine.PlayResult attribute), 48
move (chess.pgn.GameNode attribute), 36
move (chess.polyglot.Entry attribute), 41
Move (class in chess), 20
move_stack (chess.Board attribute), 23
multipv (chess.engine.AnalysisResult attribute), 52

N
NAG_BLUNDER (in module chess.pgn), 40
NAG_BRILLIANT_MOVE (in module chess.pgn), 40
NAG_DUBIOUS_MOVE (in module chess.pgn), 40
NAG_GOOD_MOVE (in module chess.pgn), 40
NAG_MISTAKE (in module chess.pgn), 40
NAG_SPECULATIVE_MOVE (in module chess.pgn), 40
nags (chess.pgn.GameNode attribute), 36
name (chess.engine.Option attribute), 53
NativeTablebase (class in chess.gaviota), 44
nodes (chess.engine.Limit attribute), 47
null() (chess.Move class method), 21

O
open_reader() (in module chess.polyglot), 41
open_tablebase() (in module chess.gaviota), 42
open_tablebase() (in module chess.syzygy), 44
open_tablebase_native() (in module

chess.gaviota), 44
Option (class in chess.engine), 53
options (chess.engine.EngineProtocol attribute), 53

P
parent (chess.pgn.GameNode attribute), 36
parse_san() (chess.Board method), 27
parse_san() (chess.pgn.BaseVisitor method), 38
parse_uci() (chess.Board method), 27
peek() (chess.Board method), 25
Piece (class in chess), 20
piece() (in module chess.svg), 57
piece_at() (chess.BaseBoard method), 29
piece_map() (chess.BaseBoard method), 30
piece_name() (in module chess), 19

Index 93

python-chess, Release 0.31.1

piece_symbol() (in module chess), 19
piece_type (chess.Piece attribute), 20
piece_type_at() (chess.BaseBoard method), 29
pieces() (chess.BaseBoard method), 29
pin() (chess.BaseBoard method), 30
ping() (chess.engine.EngineProtocol method), 55
play() (chess.engine.EngineProtocol method), 47
PlayResult (class in chess.engine), 48
pockets (chess.variant.CrazyhouseBoard attribute), 59
ponder (chess.engine.BestMove attribute), 53
ponder (chess.engine.PlayResult attribute), 48
pop() (chess.Board method), 25
pop() (chess.SquareSet method), 33
popen_uci() (chess.engine.SimpleEngine class

method), 56
popen_uci() (in module chess.engine), 55
popen_xboard() (chess.engine.SimpleEngine class

method), 56
popen_xboard() (in module chess.engine), 55
pov() (chess.engine.PovScore method), 50
PovScore (class in chess.engine), 50
probe_dtm() (chess.gaviota.PythonTablebase

method), 43
probe_dtz() (chess.syzygy.Tablebase method), 45
probe_wdl() (chess.gaviota.PythonTablebase

method), 43
probe_wdl() (chess.syzygy.Tablebase method), 45
promote() (chess.pgn.GameNode method), 37
promote_to_main() (chess.pgn.GameNode

method), 37
promoted (chess.Board attribute), 22
promotion (chess.Move attribute), 20
pseudo_legal_moves (chess.Board attribute), 22
push() (chess.Board method), 25
push_san() (chess.Board method), 27
push_uci() (chess.Board method), 27
PythonTablebase (class in chess.gaviota), 43

Q
quit() (chess.engine.EngineProtocol method), 56

R
raw_move (chess.polyglot.Entry attribute), 41
read_game() (in module chess.pgn), 34
read_headers() (in module chess.pgn), 40
relative (chess.engine.PovScore attribute), 50
remaining_checks (chess.variant.ThreeCheckBoard

attribute), 59
remaining_moves (chess.engine.Limit attribute), 48
remove() (chess.SquareSet method), 33
remove() (chess.variant.CrazyhousePocket method),

59
remove_piece_at() (chess.BaseBoard method), 30
remove_piece_at() (chess.Board method), 23

remove_variation() (chess.pgn.GameNode
method), 37

reset() (chess.Board method), 23
reset() (chess.variant.CrazyhousePocket method), 59
reset_board() (chess.BaseBoard method), 29
reset_board() (chess.Board method), 23
resigned (chess.engine.PlayResult attribute), 48
result() (chess.Board method), 24
result() (chess.pgn.BaseVisitor method), 38
result() (chess.pgn.GameBuilder method), 39
returncode (chess.engine.EngineProtocol attribute),

55
root() (chess.Board method), 23

S
san() (chess.Board method), 27
san() (chess.pgn.GameNode method), 36
Score (class in chess.engine), 50
score() (chess.engine.Score method), 50
set_board_fen() (chess.BaseBoard method), 30
set_board_fen() (chess.Board method), 26
set_castling_fen() (chess.Board method), 26
set_chess960_pos() (chess.BaseBoard method),

30
set_chess960_pos() (chess.Board method), 26
set_epd() (chess.Board method), 26
set_fen() (chess.Board method), 26
set_piece_at() (chess.BaseBoard method), 30
set_piece_at() (chess.Board method), 23
set_piece_map() (chess.BaseBoard method), 30
set_piece_map() (chess.Board method), 26
setup() (chess.pgn.Game method), 35
SimpleAnalysisResult (class in chess.engine), 56
SimpleEngine (class in chess.engine), 56
skip_game() (in module chess.pgn), 41
SkipVisitor (class in chess.pgn), 39
square() (in module chess), 20
square_distance() (in module chess), 20
square_file() (in module chess), 20
square_mirror() (in module chess), 20
square_name() (in module chess), 20
square_rank() (in module chess), 20
SquareSet (class in chess), 31
STARTING_BOARD_FEN (in module chess), 21
starting_comment (chess.pgn.GameNode attribute),

36
STARTING_FEN (in module chess), 21
starts_variation() (chess.pgn.GameNode

method), 36
status() (chess.Board method), 28
stop() (chess.engine.AnalysisResult method), 52
StringExporter (class in chess.pgn), 39
symbol() (chess.Piece method), 20

94 Index

python-chess, Release 0.31.1

T
Tablebase (class in chess.syzygy), 44
tail (chess.svg.Arrow attribute), 57
ThreeCheckBoard (class in chess.variant), 59
time (chess.engine.Limit attribute), 47
to_square (chess.Move attribute), 20
tolist() (chess.SquareSet method), 33
transform() (chess.BaseBoard method), 31
transform() (chess.Board method), 28
turn (chess.Board attribute), 21
turn (chess.engine.PovScore attribute), 50
type (chess.engine.Option attribute), 54

U
uci() (chess.Board method), 27
uci() (chess.Move method), 21
uci() (chess.pgn.GameNode method), 36
UciProtocol (class in chess.engine), 56
unicode() (chess.BaseBoard method), 31
unicode_symbol() (chess.Piece method), 20

V
var (chess.engine.Option attribute), 54
variation() (chess.pgn.GameNode method), 37
variation_san() (chess.Board method), 27
variations (chess.pgn.GameNode attribute), 36
visit_board() (chess.pgn.BaseVisitor method), 38
visit_comment() (chess.pgn.BaseVisitor method),

38
visit_header() (chess.pgn.BaseVisitor method), 38
visit_move() (chess.pgn.BaseVisitor method), 38
visit_nag() (chess.pgn.BaseVisitor method), 38
visit_result() (chess.pgn.BaseVisitor method), 38

W
wait() (chess.engine.AnalysisResult method), 52
weight (chess.polyglot.Entry attribute), 41
weighted_choice()

(chess.polyglot.MemoryMappedReader
method), 42

white() (chess.engine.PovScore method), 50
white_clock (chess.engine.Limit attribute), 48
white_inc (chess.engine.Limit attribute), 48
without_tag_roster() (chess.pgn.Game class

method), 36

X
XBoardProtocol (class in chess.engine), 56

Z
zobrist_hash() (in module chess.polyglot), 42

Index 95

	Introduction
	Documentation
	Features
	Installing
	Selected use cases
	Acknowledgements
	License
	Contents
	Core
	PGN parsing and writing
	Polyglot opening book reading
	Gaviota endgame tablebase probing
	Syzygy endgame tablebase probing
	UCI/XBoard engine communication
	SVG rendering
	Variants
	Changelog for python-chess

	Indices and tables
	Index

